Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2809254203', 'doi': 'https://doi.org/10.1007/s13244-018-0639-9', 'title': 'Convolutional neural networks: an overview and application in radiology', 'display_name': 'Convolutional neural networks: an overview and application in radiology', 'publication_year': 2018, 'publication_date': '2018-06-22', 'ids': {'openalex': 'https://openalex.org/W2809254203', 'doi': 'https://doi.org/10.1007/s13244-018-0639-9', 'mag': '2809254203', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/29934920', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/6108980'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1007/s13244-018-0639-9', 'pdf_url': 'https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-018-0639-9', 'source': {'id': 'https://openalex.org/S44632665', 'display_name': 'Insights into Imaging', 'issn_l': '1869-4101', 'issn': ['1869-4101'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319965', 'host_organization_name': 'Springer Nature', 'host_organization_lineage': ['https://openalex.org/P4310319965'], 'host_organization_lineage_names': ['Springer Nature'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'review', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'doaj', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-018-0639-9', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5048486021', 'display_name': 'Rikiya Yamashita', 'orcid': 'https://orcid.org/0000-0002-2686-2333'}, 'institutions': [{'id': 'https://openalex.org/I22299242', 'display_name': 'Kyoto University', 'ror': 'https://ror.org/02kpeqv85', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I22299242']}], 'countries': ['JP'], 'is_corresponding': True, 'raw_author_name': 'Rikiya Yamashita', 'raw_affiliation_strings': ['Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan'], 'affiliations': [{'raw_affiliation_string': 'Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan', 'institution_ids': ['https://openalex.org/I22299242']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5066648889', 'display_name': 'Mizuho Nishio', 'orcid': 'https://orcid.org/0000-0001-5870-0868'}, 'institutions': [{'id': 'https://openalex.org/I22299242', 'display_name': 'Kyoto University', 'ror': 'https://ror.org/02kpeqv85', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I22299242']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Mizuho Nishio', 'raw_affiliation_strings': ['Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan'], 'affiliations': [{'raw_affiliation_string': 'Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan', 'institution_ids': ['https://openalex.org/I22299242']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5058483454', 'display_name': 'Richard Kinh Gian', 'orcid': 'https://orcid.org/0000-0002-6554-0310'}, 'institutions': [{'id': 'https://openalex.org/I1334819555', 'display_name': 'Memorial Sloan Kettering Cancer Center', 'ror': 'https://ror.org/02yrq0923', 'country_code': 'US', 'type': 'healthcare', 'lineage': ['https://openalex.org/I1334819555']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Richard Kinh Gian Do', 'raw_affiliation_strings': ['Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA'], 'affiliations': [{'raw_affiliation_string': 'Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA', 'institution_ids': ['https://openalex.org/I1334819555']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5060847080', 'display_name': 'Kaori Togashi', 'orcid': 'https://orcid.org/0000-0003-3615-1241'}, 'institutions': [{'id': 'https://openalex.org/I22299242', 'display_name': 'Kyoto University', 'ror': 'https://ror.org/02kpeqv85', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I22299242']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Kaori Togashi', 'raw_affiliation_strings': ['Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan'], 'affiliations': [{'raw_affiliation_string': 'Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan', 'institution_ids': ['https://openalex.org/I22299242']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': ['https://openalex.org/A5048486021'], 'corresponding_institution_ids': ['https://openalex.org/I22299242'], 'apc_list': {'value': 1690, 'currency': 'GBP', 'value_usd': 2072, 'provenance': 'doaj'}, 'apc_paid': {'value': 1690, 'currency': 'GBP', 'value_usd': 2072, 'provenance': 'doaj'}, 'fwci': 42.328, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 3463, 'citation_normalized_percentile': {'value': 0.99867, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '9', 'issue': '4', 'first_page': '611', 'last_page': '629'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T10862', 'display_name': 'AI in cancer detection', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12422', 'display_name': 'Radiomics and Machine Learning in Medical Imaging', 'score': 0.9965, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/leverage', 'display_name': 'Leverage (statistics)', 'score': 0.6382656}, {'id': 'https://openalex.org/keywords/overfitting', 'display_name': 'Overfitting', 'score': 0.6088151}, {'id': 'https://openalex.org/keywords/pooling', 'display_name': 'Pooling', 'score': 0.5951054}, {'id': 'https://openalex.org/keywords/convolution', 'display_name': 'Convolution (computer science)', 'score': 0.41436023}], 'concepts': [{'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.8301889}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7681097}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.715574}, {'id': 'https://openalex.org/C153083717', 'wikidata': 'https://www.wikidata.org/wiki/Q6535263', 'display_name': 'Leverage (statistics)', 'level': 2, 'score': 0.6382656}, {'id': 'https://openalex.org/C22019652', 'wikidata': 'https://www.wikidata.org/wiki/Q331309', 'display_name': 'Overfitting', 'level': 3, 'score': 0.6088151}, {'id': 'https://openalex.org/C70437156', 'wikidata': 'https://www.wikidata.org/wiki/Q7228652', 'display_name': 'Pooling', 'level': 2, 'score': 0.5951054}, {'id': 'https://openalex.org/C108583219', 'wikidata': 'https://www.wikidata.org/wiki/Q197536', 'display_name': 'Deep learning', 'level': 2, 'score': 0.57763517}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.52519524}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.42241412}, {'id': 'https://openalex.org/C45347329', 'wikidata': 'https://www.wikidata.org/wiki/Q5166604', 'display_name': 'Convolution (computer science)', 'level': 3, 'score': 0.41436023}], 'mesh': [], 'locations_count': 5, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1007/s13244-018-0639-9', 'pdf_url': 'https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-018-0639-9', 'source': {'id': 'https://openalex.org/S44632665', 'display_name': 'Insights into Imaging', 'issn_l': '1869-4101', 'issn': ['1869-4101'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319965', 'host_organization_name': 'Springer Nature', 'host_organization_lineage': ['https://openalex.org/P4310319965'], 'host_organization_lineage_names': ['Springer Nature'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://doaj.org/article/dc12a8d883e9458db742fd7c1c320370', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306401280', 'display_name': 'DOAJ (DOAJ: Directory of Open Access Journals)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc6108980', 'pdf_url': 'https://europepmc.org/articles/pmc6108980?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108980', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/29934920', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1007/s13244-018-0639-9', 'pdf_url': 'https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-018-0639-9', 'source': {'id': 'https://openalex.org/S44632665', 'display_name': 'Insights into Imaging', 'issn_l': '1869-4101', 'issn': ['1869-4101'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319965', 'host_organization_name': 'Springer Nature', 'host_organization_lineage': ['https://openalex.org/P4310319965'], 'host_organization_lineage_names': ['Springer Nature'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [{'funder': 'https://openalex.org/F4320334764', 'funder_display_name': 'Japan Society for the Promotion of Science', 'award_id': 'JP16K19883'}], 'datasets': [], 'versions': [], 'referenced_works_count': 50, 'referenced_works': ['https://openalex.org/W130099911', 'https://openalex.org/W1665214252', 'https://openalex.org/W1686810756', 'https://openalex.org/W1849277567', 'https://openalex.org/W1901129140', 'https://openalex.org/W1904365287', 'https://openalex.org/W1980287119', 'https://openalex.org/W1986649315', 'https://openalex.org/W2080448710', 'https://openalex.org/W2083927153', 'https://openalex.org/W2097117768', 'https://openalex.org/W2101926813', 'https://openalex.org/W2103004421', 'https://openalex.org/W2117539524', 'https://openalex.org/W2117731089', 'https://openalex.org/W2128739912', 'https://openalex.org/W2143516773', 'https://openalex.org/W2156387975', 'https://openalex.org/W2164160732', 'https://openalex.org/W2194775991', 'https://openalex.org/W2250539671', 'https://openalex.org/W2295107390', 'https://openalex.org/W2322371438', 'https://openalex.org/W2322406257', 'https://openalex.org/W2357815549', 'https://openalex.org/W2493683088', 'https://openalex.org/W2526009326', 'https://openalex.org/W2557738935', 'https://openalex.org/W2570202822', 'https://openalex.org/W2574952845', 'https://openalex.org/W2581082771', 'https://openalex.org/W2608231518', 'https://openalex.org/W2753887715', 'https://openalex.org/W2754132686', 'https://openalex.org/W2763599350', 'https://openalex.org/W2765571304', 'https://openalex.org/W2768567289', 'https://openalex.org/W2770853452', 'https://openalex.org/W2772723798', 'https://openalex.org/W2779664341', 'https://openalex.org/W2783687327', 'https://openalex.org/W2804566015', 'https://openalex.org/W2919115771', 'https://openalex.org/W2949117887', 'https://openalex.org/W2949667497', 'https://openalex.org/W2962858109', 'https://openalex.org/W2962914239', 'https://openalex.org/W2963446712', 'https://openalex.org/W3101156210', 'https://openalex.org/W639708223'], 'related_works': ['https://openalex.org/W4401096132', 'https://openalex.org/W4362597605', 'https://openalex.org/W4297676672', 'https://openalex.org/W4281702477', 'https://openalex.org/W3026913501', 'https://openalex.org/W3009056573', 'https://openalex.org/W2964954556', 'https://openalex.org/W2922073769', 'https://openalex.org/W2490526372', 'https://openalex.org/W1574414179'], 'abstract_inverted_index': {'Convolutional': [0, 151, 182], 'neural': [1, 8, 152, 183, 230], 'network': [2, 153, 184, 231], '(CNN),': [3], 'a': [4, 23, 62, 155, 175, 214], 'class': [5, 156], 'of': [6, 25, 39, 68, 87, 126, 140, 144, 157, 177, 187, 211, 228], 'artificial': [7], 'networks': [9], 'that': [10], 'has': [11, 162], 'become': [12, 163], 'dominant': [13, 164], 'in': [14, 84, 91, 105, 134, 165], 'various': [15, 74, 166], 'computer': [16, 167], 'vision': [17, 168], 'tasks,': [18, 76, 96], 'is': [19, 30, 128, 154, 171, 185, 202, 232], 'attracting': [20, 172], 'interest': [21, 173], 'across': [22, 174], 'variety': [24, 176], 'domains,': [26, 178], 'including': [27, 179], 'radiology.': [28, 88, 180], 'CNN': [29, 69, 93, 127], 'designed': [31, 203], 'to': [32, 73, 94, 112, 130, 204, 234, 238], 'automatically': [33, 205], 'and': [34, 54, 70, 77, 81, 99, 120, 146, 170, 197, 201, 206, 222], 'adaptively': [35, 207], 'learn': [36, 208], 'spatial': [37, 209], 'hierarchies': [38, 210], 'features': [40, 212], 'through': [41, 213], 'backpropagation': [42, 215], 'by': [43], 'using': [44], 'multiple': [45, 188], 'building': [46, 189], 'blocks,': [47, 190], 'such': [48, 191], 'as': [49, 108, 110, 122, 124, 192, 224, 226], 'convolution': [50, 193], 'layers,': [51, 53, 194, 196, 200], 'pooling': [52, 195], 'fully': [55, 198], 'connected': [56, 199], 'layers.': [57], 'This': [58], 'review': [59], 'article': [60], 'offers': [61], 'perspective': [63], 'on': [64], 'the': [65, 85, 118, 138, 142, 220], 'basic': [66], 'concepts': [67, 119, 221], 'its': [71, 79, 132, 236], 'application': [72], 'radiological': [75, 95], 'discusses': [78], 'challenges': [80, 90], 'future': [82], 'directions': [83], 'field': [86], 'Two': [89], 'applying': [92], 'small': [97], 'dataset': [98], 'overfitting,': [100], 'will': [101], 'also': [102], 'be': [103], 'covered': [104], 'this': [106], 'article,': [107], 'well': [109, 123, 225], 'techniques': [111], 'minimize': [113], 'them.': [114], 'Being': [115], 'familiar': [116], 'with': [117, 137, 219], 'advantages,': [121, 223], 'limitations,': [125, 227], 'essential': [129, 233], 'leverage': [131, 235], 'potential': [133, 237], 'diagnostic': [135], 'radiology,': [136], 'goal': [139], 'augmenting': [141], 'performance': [143, 241], 'radiologists': [145], 'improving': [147], 'patient': [148, 244], 'care.': [149, 245], '•': [150, 181, 217], 'deep': [158], 'learning': [159], 'methods': [160], 'which': [161], 'tasks': [169], 'composed': [186], 'algorithm.': [216], 'Familiarity': [218], 'convolutional': [229], 'improve': [239], 'radiologist': [240], 'and,': [242], 'eventually,': [243]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2809254203', 'counts_by_year': [{'year': 2024, 'cited_by_count': 717}, {'year': 2023, 'cited_by_count': 886}, {'year': 2022, 'cited_by_count': 758}, {'year': 2021, 'cited_by_count': 596}, {'year': 2020, 'cited_by_count': 322}, {'year': 2019, 'cited_by_count': 105}, {'year': 2018, 'cited_by_count': 12}], 'updated_date': '2024-12-16T04:16:58.279466', 'created_date': '2018-06-29'}