Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2809040651', 'doi': 'https://doi.org/10.1016/j.insmatheco.2018.06.002', 'title': 'Bayesian nonparametric regression models for modeling and predicting healthcare claims', 'display_name': 'Bayesian nonparametric regression models for modeling and predicting healthcare claims', 'publication_year': 2018, 'publication_date': '2018-06-18', 'ids': {'openalex': 'https://openalex.org/W2809040651', 'doi': 'https://doi.org/10.1016/j.insmatheco.2018.06.002', 'mag': '2809040651'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1016/j.insmatheco.2018.06.002', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S198325475', 'display_name': 'Insurance Mathematics and Economics', 'issn_l': '0167-6687', 'issn': ['0167-6687', '1873-5959'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5101750362', 'display_name': 'Robert Richardson', 'orcid': 'https://orcid.org/0000-0001-7027-5892'}, 'institutions': [{'id': 'https://openalex.org/I100005738', 'display_name': 'Brigham Young University', 'ror': 'https://ror.org/047rhhm47', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I100005738']}], 'countries': ['US'], 'is_corresponding': True, 'raw_author_name': 'Robert Richardson', 'raw_affiliation_strings': ['Department of Statistics, Brigham Young University, United States'], 'affiliations': [{'raw_affiliation_string': 'Department of Statistics, Brigham Young University, United States', 'institution_ids': ['https://openalex.org/I100005738']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5073615269', 'display_name': 'Brian Hartman', 'orcid': 'https://orcid.org/0000-0002-9116-8161'}, 'institutions': [{'id': 'https://openalex.org/I100005738', 'display_name': 'Brigham Young University', 'ror': 'https://ror.org/047rhhm47', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I100005738']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Brian Hartman', 'raw_affiliation_strings': ['Department of Statistics, Brigham Young University, United States'], 'affiliations': [{'raw_affiliation_string': 'Department of Statistics, Brigham Young University, United States', 'institution_ids': ['https://openalex.org/I100005738']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5101750362'], 'corresponding_institution_ids': ['https://openalex.org/I100005738'], 'apc_list': {'value': 2960, 'currency': 'USD', 'value_usd': 2960, 'provenance': 'doaj'}, 'apc_paid': None, 'fwci': 1.611, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 14, 'citation_normalized_percentile': {'value': 0.843827, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 88, 'max': 89}, 'biblio': {'volume': '83', 'issue': None, 'first_page': '1', 'last_page': '8'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11901', 'display_name': 'Bayesian Methods and Mixture Models', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11901', 'display_name': 'Bayesian Methods and Mixture Models', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10243', 'display_name': 'Statistical Methods and Bayesian Inference', 'score': 0.999, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10136', 'display_name': 'Statistical Methods and Inference', 'score': 0.9975, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/robust-regression', 'display_name': 'Robust regression', 'score': 0.58878636}, {'id': 'https://openalex.org/keywords/regression-diagnostic', 'display_name': 'Regression diagnostic', 'score': 0.45970142}], 'concepts': [{'id': 'https://openalex.org/C74127309', 'wikidata': 'https://www.wikidata.org/wiki/Q3455886', 'display_name': 'Nonparametric regression', 'level': 3, 'score': 0.7498847}, {'id': 'https://openalex.org/C79337645', 'wikidata': 'https://www.wikidata.org/wiki/Q779824', 'display_name': 'Outlier', 'level': 2, 'score': 0.6617498}, {'id': 'https://openalex.org/C37903108', 'wikidata': 'https://www.wikidata.org/wiki/Q4874474', 'display_name': 'Bayesian linear regression', 'level': 4, 'score': 0.6235331}, {'id': 'https://openalex.org/C70259352', 'wikidata': 'https://www.wikidata.org/wiki/Q1847839', 'display_name': 'Robust regression', 'level': 3, 'score': 0.58878636}, {'id': 'https://openalex.org/C152877465', 'wikidata': 'https://www.wikidata.org/wiki/Q208042', 'display_name': 'Regression analysis', 'level': 2, 'score': 0.5790836}, {'id': 'https://openalex.org/C83546350', 'wikidata': 'https://www.wikidata.org/wiki/Q1139051', 'display_name': 'Regression', 'level': 2, 'score': 0.5721257}, {'id': 'https://openalex.org/C102366305', 'wikidata': 'https://www.wikidata.org/wiki/Q1097688', 'display_name': 'Nonparametric statistics', 'level': 2, 'score': 0.5683931}, {'id': 'https://openalex.org/C64946054', 'wikidata': 'https://www.wikidata.org/wiki/Q4874476', 'display_name': 'Bayesian multivariate linear regression', 'level': 3, 'score': 0.5654532}, {'id': 'https://openalex.org/C48921125', 'wikidata': 'https://www.wikidata.org/wiki/Q10861030', 'display_name': 'Linear regression', 'level': 2, 'score': 0.55328304}, {'id': 'https://openalex.org/C122342681', 'wikidata': 'https://www.wikidata.org/wiki/Q330828', 'display_name': 'Skewness', 'level': 2, 'score': 0.5173023}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.51729274}, {'id': 'https://openalex.org/C57381214', 'wikidata': 'https://www.wikidata.org/wiki/Q55631393', 'display_name': 'Regression diagnostic', 'level': 4, 'score': 0.45970142}, {'id': 'https://openalex.org/C149782125', 'wikidata': 'https://www.wikidata.org/wiki/Q160039', 'display_name': 'Econometrics', 'level': 1, 'score': 0.45459512}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.45216903}, {'id': 'https://openalex.org/C163175372', 'wikidata': 'https://www.wikidata.org/wiki/Q3339222', 'display_name': 'Linear model', 'level': 2, 'score': 0.41293514}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.40319046}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.34129924}, {'id': 'https://openalex.org/C160234255', 'wikidata': 'https://www.wikidata.org/wiki/Q812535', 'display_name': 'Bayesian inference', 'level': 3, 'score': 0.30526614}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1016/j.insmatheco.2018.06.002', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S198325475', 'display_name': 'Insurance Mathematics and Economics', 'issn_l': '0167-6687', 'issn': ['0167-6687', '1873-5959'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'score': 0.5, 'display_name': 'Good health and well-being', 'id': 'https://metadata.un.org/sdg/3'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 28, 'referenced_works': ['https://openalex.org/W1196702536', 'https://openalex.org/W1913227953', 'https://openalex.org/W1967535759', 'https://openalex.org/W1967611219', 'https://openalex.org/W1994813019', 'https://openalex.org/W1996624683', 'https://openalex.org/W2025720061', 'https://openalex.org/W2026549442', 'https://openalex.org/W2028576948', 'https://openalex.org/W2045656233', 'https://openalex.org/W2047102900', 'https://openalex.org/W2050092676', 'https://openalex.org/W2051378554', 'https://openalex.org/W2092271904', 'https://openalex.org/W2112523907', 'https://openalex.org/W2136999619', 'https://openalex.org/W2151792436', 'https://openalex.org/W2151832869', 'https://openalex.org/W2151967501', 'https://openalex.org/W2488441730', 'https://openalex.org/W2495882236', 'https://openalex.org/W3022037017', 'https://openalex.org/W3105535713', 'https://openalex.org/W3121389438', 'https://openalex.org/W3125828516', 'https://openalex.org/W3125994923', 'https://openalex.org/W3146425672', 'https://openalex.org/W618548231'], 'related_works': ['https://openalex.org/W54771334', 'https://openalex.org/W4307508674', 'https://openalex.org/W4248534646', 'https://openalex.org/W3003994871', 'https://openalex.org/W2604963692', 'https://openalex.org/W2589006171', 'https://openalex.org/W2068248578', 'https://openalex.org/W1882142787', 'https://openalex.org/W1590119768', 'https://openalex.org/W1557089904'], 'abstract_inverted_index': None, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2809040651', 'counts_by_year': [{'year': 2024, 'cited_by_count': 3}, {'year': 2023, 'cited_by_count': 1}, {'year': 2021, 'cited_by_count': 4}, {'year': 2020, 'cited_by_count': 5}, {'year': 2019, 'cited_by_count': 1}], 'updated_date': '2025-01-05T04:50:41.868216', 'created_date': '2018-06-29'}