Title: Saving the horseshoe crab: A synthetic alternative to horseshoe crab blood for endotoxin detection
Abstract:Horseshoe crabs have been integral to the safe production of vaccines and injectable medications for the past 40 years. The bleeding of live horseshoe crabs, a process that leaves thousands dead annua...Horseshoe crabs have been integral to the safe production of vaccines and injectable medications for the past 40 years. The bleeding of live horseshoe crabs, a process that leaves thousands dead annually, is an ecologically unsustainable practice for all four species of horseshoe crab and the shorebirds that rely on their eggs as a primary food source during spring migration. Populations of both horseshoe crabs and shorebirds are in decline. This study confirms the efficacy of recombinant Factor C (rFC), a synthetic alternative that eliminates the need for animal products in endotoxin detection. Furthermore, our findings confirm that the biomedical industry can achieve a 90% reduction in the use of reagents derived from horseshoe crabs by using the synthetic alternative for the testing of water and other common materials used in the manufacturing process. This represents an extraordinary opportunity for the biomedical and pharmaceutical industries to significantly contribute to the conservation of horseshoe crabs and the birds that depend on them.Read More
Title: $Saving the horseshoe crab: A synthetic alternative to horseshoe crab blood for endotoxin detection
Abstract: Horseshoe crabs have been integral to the safe production of vaccines and injectable medications for the past 40 years. The bleeding of live horseshoe crabs, a process that leaves thousands dead annually, is an ecologically unsustainable practice for all four species of horseshoe crab and the shorebirds that rely on their eggs as a primary food source during spring migration. Populations of both horseshoe crabs and shorebirds are in decline. This study confirms the efficacy of recombinant Factor C (rFC), a synthetic alternative that eliminates the need for animal products in endotoxin detection. Furthermore, our findings confirm that the biomedical industry can achieve a 90% reduction in the use of reagents derived from horseshoe crabs by using the synthetic alternative for the testing of water and other common materials used in the manufacturing process. This represents an extraordinary opportunity for the biomedical and pharmaceutical industries to significantly contribute to the conservation of horseshoe crabs and the birds that depend on them.