Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2796054100', 'doi': 'https://doi.org/10.1016/j.juro.2018.02.680', 'title': 'MP20-10 DEEP LEARNING WITH A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR FULLY AUTOMATED DETECTION OF PROSTATE CANCER USING PRE-BIOPSY MRI', 'display_name': 'MP20-10 DEEP LEARNING WITH A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR FULLY AUTOMATED DETECTION OF PROSTATE CANCER USING PRE-BIOPSY MRI', 'publication_year': 2018, 'publication_date': '2018-04-01', 'ids': {'openalex': 'https://openalex.org/W2796054100', 'doi': 'https://doi.org/10.1016/j.juro.2018.02.680', 'mag': '2796054100'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.juro.2018.02.680', 'pdf_url': 'https://www.auajournals.org/doi/pdf/10.1016/j.juro.2018.02.680', 'source': {'id': 'https://openalex.org/S30525748', 'display_name': 'The Journal of Urology', 'issn_l': '0022-5347', 'issn': ['0022-5347', '1527-3792'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315671', 'host_organization_name': 'Lippincott Williams & Wilkins', 'host_organization_lineage': ['https://openalex.org/P4310315671', 'https://openalex.org/P4310318547'], 'host_organization_lineage_names': ['Lippincott Williams & Wilkins', 'Wolters Kluwer'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'bronze', 'oa_url': 'https://www.auajournals.org/doi/pdf/10.1016/j.juro.2018.02.680', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5001139671', 'display_name': 'Junichiro Ishioka', 'orcid': 'https://orcid.org/0000-0001-5320-8815'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Junichiro Ishioka', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5039314030', 'display_name': 'Yoh Matsuoka', 'orcid': 'https://orcid.org/0000-0002-2440-5104'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Yoh Matsuoka', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5074658156', 'display_name': 'Sho Uehara', 'orcid': 'https://orcid.org/0000-0001-9579-2992'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Sho Uehara', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5047164614', 'display_name': 'Yosuke Yasuda', 'orcid': 'https://orcid.org/0000-0001-5427-1680'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Yosuke Yasuda', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5090215162', 'display_name': 'Toshiki Kijima', 'orcid': 'https://orcid.org/0000-0002-4380-9294'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Toshiki Kijima', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5060240988', 'display_name': 'Soichiro Yoshida', 'orcid': 'https://orcid.org/0000-0003-2757-8083'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Soichiro Yoshida', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5030126202', 'display_name': 'Minato Yokoyama', 'orcid': 'https://orcid.org/0000-0002-0245-8934'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Minato Yokoyama', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5006217384', 'display_name': 'Kazutaka Saito', 'orcid': 'https://orcid.org/0000-0002-7261-0188'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Kazutaka Saito', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5113821308', 'display_name': 'Tomo Kimura', 'orcid': None}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Tomo Kimura', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5109980586', 'display_name': 'Kosei Kudo', 'orcid': None}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Kosei Kudo', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5024015306', 'display_name': 'Itsuo Kumazawa', 'orcid': 'https://orcid.org/0000-0002-5409-2727'}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Itsuo Kumazawa', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5102171465', 'display_name': 'Yasuhisa Fujii', 'orcid': None}, 'institutions': [], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Yasuhisa Fujii', 'raw_affiliation_strings': ['Tokyo, Japan'], 'affiliations': [{'raw_affiliation_string': 'Tokyo, Japan', 'institution_ids': []}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 0, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.547, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 5, 'citation_normalized_percentile': {'value': 0.795816, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 79, 'max': 80}, 'biblio': {'volume': '199', 'issue': '4S', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T12422', 'display_name': 'Radiomics and Machine Learning in Medical Imaging', 'score': 0.9943, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T12422', 'display_name': 'Radiomics and Machine Learning in Medical Imaging', 'score': 0.9943, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T14510', 'display_name': 'Medical Imaging and Analysis', 'score': 0.9186, 'subfield': {'id': 'https://openalex.org/subfields/2204', 'display_name': 'Biomedical Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/cancer-detection', 'display_name': 'Cancer Detection', 'score': 0.42342007}], 'concepts': [{'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.74048346}, {'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.620843}, {'id': 'https://openalex.org/C2780192828', 'wikidata': 'https://www.wikidata.org/wiki/Q181257', 'display_name': 'Prostate cancer', 'level': 3, 'score': 0.6080939}, {'id': 'https://openalex.org/C2775934546', 'wikidata': 'https://www.wikidata.org/wiki/Q179991', 'display_name': 'Biopsy', 'level': 2, 'score': 0.5775189}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.51750493}, {'id': 'https://openalex.org/C143409427', 'wikidata': 'https://www.wikidata.org/wiki/Q161238', 'display_name': 'Magnetic resonance imaging', 'level': 2, 'score': 0.48460042}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.4581321}, {'id': 'https://openalex.org/C2985322473', 'wikidata': 'https://www.wikidata.org/wiki/Q3044843', 'display_name': 'Cancer detection', 'level': 3, 'score': 0.42342007}, {'id': 'https://openalex.org/C126838900', 'wikidata': 'https://www.wikidata.org/wiki/Q77604', 'display_name': 'Radiology', 'level': 1, 'score': 0.40409404}, {'id': 'https://openalex.org/C19527891', 'wikidata': 'https://www.wikidata.org/wiki/Q1120908', 'display_name': 'Medical physics', 'level': 1, 'score': 0.35134974}, {'id': 'https://openalex.org/C121608353', 'wikidata': 'https://www.wikidata.org/wiki/Q12078', 'display_name': 'Cancer', 'level': 2, 'score': 0.35021064}, {'id': 'https://openalex.org/C29456083', 'wikidata': 'https://www.wikidata.org/wiki/Q1221899', 'display_name': 'Gynecology', 'level': 1, 'score': 0.34775773}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.3283698}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.25107092}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.15268242}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.juro.2018.02.680', 'pdf_url': 'https://www.auajournals.org/doi/pdf/10.1016/j.juro.2018.02.680', 'source': {'id': 'https://openalex.org/S30525748', 'display_name': 'The Journal of Urology', 'issn_l': '0022-5347', 'issn': ['0022-5347', '1527-3792'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315671', 'host_organization_name': 'Lippincott Williams & Wilkins', 'host_organization_lineage': ['https://openalex.org/P4310315671', 'https://openalex.org/P4310318547'], 'host_organization_lineage_names': ['Lippincott Williams & Wilkins', 'Wolters Kluwer'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.juro.2018.02.680', 'pdf_url': 'https://www.auajournals.org/doi/pdf/10.1016/j.juro.2018.02.680', 'source': {'id': 'https://openalex.org/S30525748', 'display_name': 'The Journal of Urology', 'issn_l': '0022-5347', 'issn': ['0022-5347', '1527-3792'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315671', 'host_organization_name': 'Lippincott Williams & Wilkins', 'host_organization_lineage': ['https://openalex.org/P4310315671', 'https://openalex.org/P4310318547'], 'host_organization_lineage_names': ['Lippincott Williams & Wilkins', 'Wolters Kluwer'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/3', 'display_name': 'Good health and well-being', 'score': 0.45}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 0, 'referenced_works': [], 'related_works': ['https://openalex.org/W63507804', 'https://openalex.org/W4293226380', 'https://openalex.org/W299695548', 'https://openalex.org/W2396177269', 'https://openalex.org/W2108412422', 'https://openalex.org/W2072099825', 'https://openalex.org/W2062305425', 'https://openalex.org/W2056969522', 'https://openalex.org/W1992326454', 'https://openalex.org/W1806004080'], 'abstract_inverted_index': {'You': [0], 'have': [1], 'accessJournal': [2], 'of': [3, 122, 129, 145, 177, 254, 294, 332, 347, 397, 413, 432, 452], 'UrologyImaging/Radiology:': [4], 'Uroradiology': [5], 'II1': [6], 'Apr': [7], '2018MP20-10': [8], 'DEEP': [9], 'LEARNING': [10], 'WITH': [11], 'A': [12], 'CONVOLUTIONAL': [13], 'NEURAL': [14], 'NETWORK': [15], 'ALGORITHM': [16], 'FOR': [17], 'FULLY': [18], 'AUTOMATED': [19], 'DETECTION': [20], 'OF': [21], 'PROSTATE': [22], 'CANCER': [23], 'USING': [24], 'PRE-BIOPSY': [25], 'MRI': [26, 146, 439], 'Junichiro': [27, 52, 469], 'Ishioka,': [28], 'Yoh': [29, 56, 476], 'Matsuoka,': [30], 'Sho': [31, 60, 483], 'Uehara,': [32], 'Yosuke': [33, 64, 490], 'Yasuda,': [34], 'Toshiki': [35, 68, 497], 'Kijima,': [36], 'Soichiro': [37, 72, 504], 'Yoshida,': [38], 'Minato': [39, 76, 511], 'Yokoyama,': [40], 'Kazutaka': [41, 80, 518], 'Saito,': [42], 'Tomo': [43, 84, 525], 'Kimura,': [44], 'Kosei': [45, 88, 532], 'Kudo,': [46], 'Itsuo': [47, 92, 539], 'Kumazawa,': [48], 'and': [49, 96, 132, 143, 156, 198, 224, 238, 258, 285, 307, 334, 340, 373, 404, 408, 448, 454], 'Yasuhisa': [50, 97, 546], 'Fujii': [51, 99, 547], 'IshiokaJunichiro': [53], 'Ishioka': [54, 470], ',': [55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95], 'MatsuokaYoh': [57], 'Matsuoka': [58, 477], 'UeharaSho': [61], 'Uehara': [62, 484], 'YasudaYosuke': [65], 'Yasuda': [66, 491], 'KijimaToshiki': [69], 'Kijima': [70, 498], 'YoshidaSoichiro': [73], 'Yoshida': [74, 505], 'YokoyamaMinato': [77], 'Yokoyama': [78, 512], 'SaitoKazutaka': [81], 'Saito': [82, 519], 'KimuraTomo': [85], 'Kimura': [86, 526], 'KudoKosei': [89], 'Kudo': [90, 533], 'KumazawaItsuo': [93], 'Kumazawa': [94, 540], 'FujiiYasuhisa': [98], 'View': [100], 'All': [101, 554], 'Author': [102], 'Informationhttps://doi.org/10.1016/j.juro.2018.02.680AboutPDF': [103], 'ToolsAdd': [104], 'to': [105, 152, 290, 444], 'favoritesDownload': [106], 'CitationsTrack': [107], 'CitationsPermissionsReprints': [108], 'ShareFacebookTwitterLinked': [109], 'InEmail': [110], 'INTRODUCTION': [111], 'AND': [112], 'OBJECTIVES': [113], 'Magnetic': [114], 'resonance': [115], 'imaging': [116], '(MRI)': [117], 'provides': [118], 'a': [119, 149, 163, 168, 292, 319, 423, 449], 'noninvasive': [120], 'assessment': [121], 'the': [123, 127, 141, 246, 264, 269, 279, 283, 305, 348, 374, 379, 383, 395, 398, 401, 411, 437, 442], 'prostate': [124, 130, 178, 193, 207, 211, 222, 433], 'that': [125], 'improves': [126], 'detection': [128, 176, 431], 'cancer': [131, 179, 194, 208, 223, 256, 306, 333, 380, 434], 'can': [133], 'reduce': [134], 'unnecessary': [135], 'biopsies.': [136], 'The': [137, 344, 365], 'excessive': [138], 'variation': [139], 'in': [140, 304, 436], 'performance': [142], 'interpretation': [144, 447], 'is,': [147], 'however,': [148], 'major': [150], 'barrier': [151], 'its': [153], 'widespread': [154], 'acceptance': [155], 'use.': [157], 'In': [158], 'this': [159, 474, 481, 488, 495, 502, 509, 516, 523, 530, 537, 544, 551], 'study,': [160], 'we': [161, 272], 'developed': [162], 'computer-aided': [164], 'diagnostic': [165], 'system': [166], 'with': [167, 192, 206, 325, 422], 'convolutional': [169, 320, 424], 'neural': [170, 321, 425], 'network': [171, 322, 426], 'algorithm': [172, 427], 'for': [173, 233, 313, 367, 377, 428], 'fully': [174, 429], 'automated': [175, 430], 'using': [180, 249, 318, 382], 'pre-biopsy': [181, 438], 'MRI.': [182], 'METHODS': [183], 'We': [184, 213], 'selected': [185], '187': [186], 'T2WMRI-positive': [187], 'patients': [188, 201, 219, 229, 336], 'who': [189, 202], 'were': [190, 203, 240, 302, 337], 'diagnosed': [191, 205, 220, 230], 'by': [195, 209, 242, 473, 480, 487, 494, 501, 508, 515, 522, 529, 536, 543, 550], 'MRI-targeted': [196], 'biopsy': [197, 350], '129': [199], 'T2WMRI-negative': [200], 'not': [204], 'systematic': [210], 'biopsy.': [212], 'used': [214, 303], '1334': [215], 'images': [216, 226, 257, 261, 277, 416], 'from': [217, 227, 263], '165': [218], 'as': [221, 231], '3155': [225], '107': [228], 'non-cancer': [232, 260, 308, 335], 'deep': [234, 368], 'learning.': [235], 'Model': [236], 'evaluation': [237], 'validation': [239], 'performed': [241, 286, 317], 'calculating': [243], 'area': [244], 'under': [245], 'curve': [247], '(AUC)': [248], '2': [250], 'data': [251], 'sets': [252], 'consisting': [253], '11': [255], '6': [259], 'excluded': [262], 'training': [265], 'samples.': [266], 'To': [267], 'generate': [268], 'input': [270], 'image,': [271], 'sampled': [273], '20': [274, 414], 'million': [275, 415], 'parallelogram': [276], 'at': [278], 'central': [280], 'region': [281, 381], 'including': [282], 'prostate,': [284], 'an': [287], 'affine': [288], 'transformation': [289], 'create': [291], 'square': [293], '261': [295, 297], '×': [296], 'pixels.': [298], 'Different': [299], 'loss': [300], 'functions': [301], 'regions.': [309], 'Deep': [310], 'transfer': [311], 'learning': [312, 369, 396, 412], 'parameter': [314], 'optimization': [315], 'was': [316, 353, 370, 386, 417], '(U-net': [323], 'combined': [324], 'ResNet50)': [326], '(Figure).': [327], 'RESULTS': [328], 'Median': [329], 'PSA': [330], 'levels': [331], '8.40': [338], 'ng/ml': [339], '6.43': [341], 'ng/ml,': [342], 'respectively.': [343, 364], 'Gleason': [345], 'score': [346], 'targeted': [349], 'positive': [351], 'site': [352], '3+3:': [354], '14,': [355], '3+4:': [356], '76,': [357], '4+3:': [358], '41,': [359], '4+4:': [360], '47,': [361], '9≤:': [362], '9,': [363], 'time': [366, 376], '5.5': [371], 'hours,': [372], 'required': [375], 'detecting': [378], 'pre-trained': [384], 'model': [385], '30': [387], 'milliseconds': [388], 'per': [389], 'image': [390, 399, 440], '(GPU:': [391], 'GeForceGTX': [392], '1080®).': [393], 'As': [394], 'progressed,': [400], 'AUC': [402], 'increased': [403], 'finally': [405], 'reached': [406], '0.793': [407], '0.636': [409], 'when': [410], 'finished.': [418], 'CONCLUSIONS': [419], 'Computer-aided': [420], 'diagnosis': [421], 'regions': [435], 'has': [441], 'potential': [443], 'provide': [445], 'reproducible': [446], 'greater': [450], 'level': [451], 'standardization': [453], 'consistency.': [455], '©': [456], '2018FiguresReferencesRelatedDetails': [457], 'Volume': [458], '199Issue': [459], '4SApril': [460], '2018Page:': [461], 'e256': [462], 'Advertisement': [463, 555, 556], 'Copyright': [464], '&': [465], 'Permissions©': [466], '2018MetricsAuthor': [467], 'Information': [468], 'More': [471, 478, 485, 492, 499, 506, 513, 520, 527, 534, 541, 548], 'articles': [472, 479, 486, 493, 500, 507, 514, 521, 528, 535, 542, 549], 'author': [475, 482, 489, 496, 503, 510, 517, 524, 531, 538, 545, 552], 'Expand': [553], 'PDF': [557], 'downloadLoading': [558], '...': [559]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2796054100', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 1}, {'year': 2021, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 1}, {'year': 2018, 'cited_by_count': 1}], 'updated_date': '2024-12-28T14:05:18.897753', 'created_date': '2018-04-13'}