Title: On the period map for polarized hyperk\"ahler fourfolds.
Abstract:This is an improved version of the eprint previously entitled Unexpected isomorphisms between hyperkahler fourfolds.
We study smooth projective hyperkahler fourfolds that are deformations of Hilbert...This is an improved version of the eprint previously entitled Unexpected isomorphisms between hyperkahler fourfolds.
We study smooth projective hyperkahler fourfolds that are deformations of Hilbert squares of K3 surfaces and are equipped with a polarization of fixed degree and divisibility. They are parametrized by a quasi-projective irreducible 20-dimensional moduli space and Verbitksy's Torelli theorem implies that their period map is an open embedding.
Our main result is that the complement of the image of the period map is a finite union of explicit Heegner divisors that we describe. We also prove that infinitely many Heegner divisors in a given period space have the property that their general points correspond to fourfolds which are isomorphic to Hilbert squares of a K3 surfaces, or to double EPW sextics.
In two appendices, we determine the groups of biregular or birational automorphisms of various projective hyperkahler fourfolds with Picard number 1 or 2.Read More
Publication Year: 2017
Publication Date: 2017-04-05
Language: en
Type: preprint
Access and Citation
Cited By Count: 10
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot