Publication Information

Basic Information

Access and Citation

AI Researcher Chatbot

Get quick answers to your questions about the article from our AI researcher chatbot

Primary Location

Authors

Topics

Keywords

Related Works

Title: $Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston
Abstract: Power output ( P ), thermal efficiency ( η ) and ecological function ( E ) characteristics of an endoreversible Dual-Miller cycle (DMC) with finite speed of the piston and finite rate of heat transfer are investigated by applying finite time thermodynamic (FTT) theory. The parameter expressions of the non-dimensional power output ( P ¯ ), η and non-dimensional ecological function ( E ¯ ) are derived. The relationships between P ¯ and cut-off ratio ( ρ ), between P ¯ and η , as well as between E ¯ and ρ are demonstrated. The influences of ρ and piston speeds in different processes on P ¯ , η and E ¯ are investigated. The results show that P ¯ and E ¯ first increase and then start to decrease with increasing ρ . The optimal cut-off ratio ρ o p t will increase if piston speeds increase in heat addition processes and heat rejection processes. As piston speeds in different processes increase, the maximum values of P ¯ and E ¯ increase. The results include the performance characteristics of various simplified cycles of DMC, such as Otto cycle, Diesel cycle, Dual cycle, Otto-Atkinson cycle, Diesel-Atkinson cycle, Dual-Atkinson cycle, Otto-Miller cycle and Diesel-Miller cycle. Comparing performance characteristics of the DMC with different optimization objectives, when choosing E ¯ as optimization objective, η improves 26.4% compared to choosing P ¯ as optimization objective, while P ¯ improves 74.3% compared to choosing η as optimization objective. Thus, optimizing E is the best compromise between optimizing P and optimizing η . The results obtained can provide theoretical guidance to design practical DMC engines.