Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2774513877', 'doi': 'https://doi.org/10.1109/icacci.2017.8126078', 'title': 'Stock price prediction using LSTM, RNN and CNN-sliding window model', 'display_name': 'Stock price prediction using LSTM, RNN and CNN-sliding window model', 'publication_year': 2017, 'publication_date': '2017-09-01', 'ids': {'openalex': 'https://openalex.org/W2774513877', 'doi': 'https://doi.org/10.1109/icacci.2017.8126078', 'mag': '2774513877'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/icacci.2017.8126078', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5068879669', 'display_name': 'Sreelekshmy Selvin', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I81556334', 'display_name': 'Amrita Vishwa Vidyapeetham', 'ror': 'https://ror.org/03am10p12', 'country_code': 'IN', 'type': 'education', 'lineage': ['https://openalex.org/I81556334']}], 'countries': ['IN'], 'is_corresponding': False, 'raw_author_name': 'Sreelekshmy Selvin', 'raw_affiliation_strings': ['Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India'], 'affiliations': [{'raw_affiliation_string': 'Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India', 'institution_ids': ['https://openalex.org/I81556334']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5112825787', 'display_name': 'R. Vinayakumar', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I81556334', 'display_name': 'Amrita Vishwa Vidyapeetham', 'ror': 'https://ror.org/03am10p12', 'country_code': 'IN', 'type': 'education', 'lineage': ['https://openalex.org/I81556334']}], 'countries': ['IN'], 'is_corresponding': False, 'raw_author_name': 'R Vinayakumar', 'raw_affiliation_strings': ['Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India'], 'affiliations': [{'raw_affiliation_string': 'Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India', 'institution_ids': ['https://openalex.org/I81556334']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5076633180', 'display_name': 'E. A. Gopalakrishnan', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I81556334', 'display_name': 'Amrita Vishwa Vidyapeetham', 'ror': 'https://ror.org/03am10p12', 'country_code': 'IN', 'type': 'education', 'lineage': ['https://openalex.org/I81556334']}], 'countries': ['IN'], 'is_corresponding': False, 'raw_author_name': 'E. A Gopalakrishnan', 'raw_affiliation_strings': ['Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India'], 'affiliations': [{'raw_affiliation_string': 'Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India', 'institution_ids': ['https://openalex.org/I81556334']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5009434906', 'display_name': 'Vijay Menon', 'orcid': 'https://orcid.org/0000-0003-3328-0347'}, 'institutions': [{'id': 'https://openalex.org/I81556334', 'display_name': 'Amrita Vishwa Vidyapeetham', 'ror': 'https://ror.org/03am10p12', 'country_code': 'IN', 'type': 'education', 'lineage': ['https://openalex.org/I81556334']}], 'countries': ['IN'], 'is_corresponding': False, 'raw_author_name': 'Vijay Krishna Menon', 'raw_affiliation_strings': ['Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India'], 'affiliations': [{'raw_affiliation_string': 'Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India', 'institution_ids': ['https://openalex.org/I81556334']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5113113768', 'display_name': 'K. P. Soman', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I81556334', 'display_name': 'Amrita Vishwa Vidyapeetham', 'ror': 'https://ror.org/03am10p12', 'country_code': 'IN', 'type': 'education', 'lineage': ['https://openalex.org/I81556334']}], 'countries': ['IN'], 'is_corresponding': False, 'raw_author_name': 'K. P. Soman', 'raw_affiliation_strings': ['Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India'], 'affiliations': [{'raw_affiliation_string': 'Centre for Computational Engineering and Networking (CEN), Amrita University, Coimbatore, India', 'institution_ids': ['https://openalex.org/I81556334']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 34.368, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 824, 'citation_normalized_percentile': {'value': 0.914337, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': '1643', 'last_page': '1647'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11326', 'display_name': 'Stock Market Forecasting Methods', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1803', 'display_name': 'Management Science and Operations Research'}, 'field': {'id': 'https://openalex.org/fields/18', 'display_name': 'Decision Sciences'}, 'domain': {'id': 'https://openalex.org/domains/2', 'display_name': 'Social Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11326', 'display_name': 'Stock Market Forecasting Methods', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1803', 'display_name': 'Management Science and Operations Research'}, 'field': {'id': 'https://openalex.org/fields/18', 'display_name': 'Decision Sciences'}, 'domain': {'id': 'https://openalex.org/domains/2', 'display_name': 'Social Sciences'}}, {'id': 'https://openalex.org/T11918', 'display_name': 'Forecasting Techniques and Applications', 'score': 0.9976, 'subfield': {'id': 'https://openalex.org/subfields/1803', 'display_name': 'Management Science and Operations Research'}, 'field': {'id': 'https://openalex.org/fields/18', 'display_name': 'Decision Sciences'}, 'domain': {'id': 'https://openalex.org/domains/2', 'display_name': 'Social Sciences'}}, {'id': 'https://openalex.org/T11059', 'display_name': 'Market Dynamics and Volatility', 'score': 0.9936, 'subfield': {'id': 'https://openalex.org/subfields/2002', 'display_name': 'Economics and Econometrics'}, 'field': {'id': 'https://openalex.org/fields/20', 'display_name': 'Economics, Econometrics and Finance'}, 'domain': {'id': 'https://openalex.org/domains/2', 'display_name': 'Social Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/sliding-window-protocol', 'display_name': 'Sliding window protocol', 'score': 0.61345255}, {'id': 'https://openalex.org/keywords/stock-market-prediction', 'display_name': 'Stock Market Prediction', 'score': 0.45814818}, {'id': 'https://openalex.org/keywords/equity', 'display_name': 'Equity', 'score': 0.44966072}, {'id': 'https://openalex.org/keywords/stock', 'display_name': 'Stock (firearms)', 'score': 0.41622302}], 'concepts': [{'id': 'https://openalex.org/C24338571', 'wikidata': 'https://www.wikidata.org/wiki/Q2566298', 'display_name': 'Autoregressive integrated moving average', 'level': 3, 'score': 0.7126198}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.68587464}, {'id': 'https://openalex.org/C102392041', 'wikidata': 'https://www.wikidata.org/wiki/Q592860', 'display_name': 'Sliding window protocol', 'level': 3, 'score': 0.61345255}, {'id': 'https://openalex.org/C108583219', 'wikidata': 'https://www.wikidata.org/wiki/Q197536', 'display_name': 'Deep learning', 'level': 2, 'score': 0.56317997}, {'id': 'https://openalex.org/C2780299701', 'wikidata': 'https://www.wikidata.org/wiki/Q475000', 'display_name': 'Stock market', 'level': 3, 'score': 0.55382603}, {'id': 'https://openalex.org/C149782125', 'wikidata': 'https://www.wikidata.org/wiki/Q160039', 'display_name': 'Econometrics', 'level': 1, 'score': 0.5240893}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.5088475}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.47679758}, {'id': 'https://openalex.org/C2776256503', 'wikidata': 'https://www.wikidata.org/wiki/Q7617906', 'display_name': 'Stock market prediction', 'level': 4, 'score': 0.45814818}, {'id': 'https://openalex.org/C151406439', 'wikidata': 'https://www.wikidata.org/wiki/Q186588', 'display_name': 'Time series', 'level': 2, 'score': 0.45071328}, {'id': 'https://openalex.org/C199728807', 'wikidata': 'https://www.wikidata.org/wiki/Q2578557', 'display_name': 'Equity (law)', 'level': 2, 'score': 0.44966072}, {'id': 'https://openalex.org/C88389905', 'wikidata': 'https://www.wikidata.org/wiki/Q223371', 'display_name': 'Stock market index', 'level': 4, 'score': 0.44727758}, {'id': 'https://openalex.org/C2988984586', 'wikidata': 'https://www.wikidata.org/wiki/Q1020013', 'display_name': 'Stock price', 'level': 3, 'score': 0.44250146}, {'id': 'https://openalex.org/C147168706', 'wikidata': 'https://www.wikidata.org/wiki/Q1457734', 'display_name': 'Recurrent neural network', 'level': 3, 'score': 0.4389961}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.42881447}, {'id': 'https://openalex.org/C23922673', 'wikidata': 'https://www.wikidata.org/wiki/Q180752', 'display_name': 'Autoregressive conditional heteroskedasticity', 'level': 3, 'score': 0.4170248}, {'id': 'https://openalex.org/C204036174', 'wikidata': 'https://www.wikidata.org/wiki/Q909380', 'display_name': 'Stock (firearms)', 'level': 2, 'score': 0.41622302}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.19386786}, {'id': 'https://openalex.org/C91602232', 'wikidata': 'https://www.wikidata.org/wiki/Q756115', 'display_name': 'Volatility (finance)', 'level': 2, 'score': 0.16943848}, {'id': 'https://openalex.org/C2778751112', 'wikidata': 'https://www.wikidata.org/wiki/Q835016', 'display_name': 'Window (computing)', 'level': 2, 'score': 0.1564405}, {'id': 'https://openalex.org/C143724316', 'wikidata': 'https://www.wikidata.org/wiki/Q312468', 'display_name': 'Series (stratigraphy)', 'level': 2, 'score': 0.13994968}, {'id': 'https://openalex.org/C127413603', 'wikidata': 'https://www.wikidata.org/wiki/Q11023', 'display_name': 'Engineering', 'level': 0, 'score': 0.091988}, {'id': 'https://openalex.org/C199539241', 'wikidata': 'https://www.wikidata.org/wiki/Q7748', 'display_name': 'Law', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C2780762169', 'wikidata': 'https://www.wikidata.org/wiki/Q5905368', 'display_name': 'Horse', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C151730666', 'wikidata': 'https://www.wikidata.org/wiki/Q7205', 'display_name': 'Paleontology', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C17744445', 'wikidata': 'https://www.wikidata.org/wiki/Q36442', 'display_name': 'Political science', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C78519656', 'wikidata': 'https://www.wikidata.org/wiki/Q101333', 'display_name': 'Mechanical engineering', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/icacci.2017.8126078', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/9', 'display_name': 'Industry, innovation and infrastructure', 'score': 0.45}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 23, 'referenced_works': ['https://openalex.org/W1517272581', 'https://openalex.org/W1541800879', 'https://openalex.org/W2064675550', 'https://openalex.org/W2080265874', 'https://openalex.org/W2117829824', 'https://openalex.org/W2120224355', 'https://openalex.org/W2149223397', 'https://openalex.org/W2158663270', 'https://openalex.org/W2182617889', 'https://openalex.org/W2271895222', 'https://openalex.org/W2279310754', 'https://openalex.org/W2296438605', 'https://openalex.org/W2306668006', 'https://openalex.org/W2313953460', 'https://openalex.org/W2337958348', 'https://openalex.org/W2469918885', 'https://openalex.org/W2548227626', 'https://openalex.org/W2557283755', 'https://openalex.org/W2919115771', 'https://openalex.org/W3142673615', 'https://openalex.org/W4251074844', 'https://openalex.org/W4292483811', 'https://openalex.org/W832636362'], 'related_works': ['https://openalex.org/W4322488037', 'https://openalex.org/W4313268783', 'https://openalex.org/W4283371150', 'https://openalex.org/W3216834999', 'https://openalex.org/W3183586935', 'https://openalex.org/W3124100177', 'https://openalex.org/W2182231296', 'https://openalex.org/W2145252306', 'https://openalex.org/W1999021852', 'https://openalex.org/W1983035395'], 'abstract_inverted_index': {'Stock': [0], 'market': [1, 4], 'or': [2, 14, 57], 'equity': [3], 'have': [5], 'a': [6, 61, 73, 85, 128, 137], 'profound': [7], 'impact': [8], 'in': [9, 16, 24, 96], "today's": [10], 'economy.': [11], 'A': [12], 'rise': [13], 'fall': [15], 'the': [17, 26, 53, 65, 82, 92, 97, 114, 144], 'share': [18], 'price': [19, 58, 115], 'has': [20], 'an': [21], 'important': [22], 'role': [23], 'determining': [25], "investor's": [27], 'gain.': [28], 'The': [29, 69, 141], 'existing': [30, 95], 'forecasting': [31, 59], 'methods': [32], 'make': [33], 'use': [34, 107], 'of': [35, 117, 143], 'both': [36], 'linear': [37], '(AR,': [38], 'MA,': [39], 'ARIMA)': [40], 'and': [41, 121], 'non-linear': [42], 'algorithms': [43], '(ARCH,': [44], 'GARCH,': [45], 'Neural': [46], 'Networks),': [47], 'but': [48], 'they': [49], 'focus': [50], 'on': [51, 136], 'predicting': [52, 133], 'stock': [54], 'index': [55], 'movement': [56], 'for': [60, 113, 132], 'single': [62], 'company': [63], 'using': [64, 99, 148], 'daily': [66], 'closing': [67], 'price.': [68], 'proposed': [70], 'method': [71], 'is': [72], 'model': [74], 'independent': [75], 'approach.': [76], 'Here': [77], 'we': [78, 89, 106], 'are': [79, 90, 126], 'not': [80], 'fitting': [81], 'data': [83, 98], 'to': [84], 'specific': [86], 'model,': [87], 'rather': [88], 'identifying': [91], 'latent': [93], 'dynamics': [94], 'deep': [100, 110], 'learning': [101, 111], 'architectures.': [102], 'In': [103], 'this': [104], 'work': [105], 'three': [108], 'different': [109], 'architectures': [112], 'prediction': [116], 'NSE': [118], 'listed': [119], 'companies': [120], 'compares': [122], 'their': [123], 'performance.': [124], 'We': [125], 'applying': [127], 'sliding': [129], 'window': [130], 'approach': [131], 'future': [134], 'values': [135], 'short': [138], 'term': [139], 'basis.': [140], 'performance': [142], 'models': [145], 'were': [146], 'quantified': [147], 'percentage': [149], 'error.': [150]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2774513877', 'counts_by_year': [{'year': 2024, 'cited_by_count': 151}, {'year': 2023, 'cited_by_count': 183}, {'year': 2022, 'cited_by_count': 178}, {'year': 2021, 'cited_by_count': 158}, {'year': 2020, 'cited_by_count': 100}, {'year': 2019, 'cited_by_count': 36}, {'year': 2018, 'cited_by_count': 13}], 'updated_date': '2025-01-06T21:54:09.903916', 'created_date': '2017-12-22'}