Title: The influence of temperature and density on the microscopic structure and dynamics of long polymer chains: Molecular dynamics and dissipative particle dynamics modeling
Abstract:Long polymer chains that mainly exhibit thermoplastic properties are recognized to demonstrate excellent thermal and mechanical features at the molecular level. For the purpose of facilitating its stu...Long polymer chains that mainly exhibit thermoplastic properties are recognized to demonstrate excellent thermal and mechanical features at the molecular level. For the purpose of facilitating its study, we present the results of a coarse-grained Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD) simulations under the Canonical ensemble (NVT) conditions. For each simulation method, the structure, static and dynamic properties were analyzed, with particular emphasis on the influence of density and temperature on the equilibrium of the polymer. We find, after correcting the Soft Repulsive Potential (SRP) parameters used in DPD method, that both simulation methods describe the polymer physics with the same accuracy. This proves that the DPD method can simplify the polymer simulation and can reproduce with the same precision the equilibrium obtained in the MD simulation.Read More
Publication Year: 2017
Publication Date: 2017-09-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 1
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot