Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2765482516', 'doi': 'https://doi.org/10.23919/eusipco.2017.8081207', 'title': 'Automatic atlas-guided constrained random Walker algorithm for 3D segmentation of muscles on water magnetic resonance images', 'display_name': 'Automatic atlas-guided constrained random Walker algorithm for 3D segmentation of muscles on water magnetic resonance images', 'publication_year': 2017, 'publication_date': '2017-08-01', 'ids': {'openalex': 'https://openalex.org/W2765482516', 'doi': 'https://doi.org/10.23919/eusipco.2017.8081207', 'mag': '2765482516'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.23919/eusipco.2017.8081207', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607854', 'display_name': '2021 29th European Signal Processing Conference (EUSIPCO)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://zenodo.org/records/1159192/files/1570339605.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5083897355', 'display_name': 'Faezeh Fallah', 'orcid': 'https://orcid.org/0000-0002-7115-9161'}, 'institutions': [{'id': 'https://openalex.org/I100066346', 'display_name': 'University of Stuttgart', 'ror': 'https://ror.org/04vnq7t77', 'country_code': 'DE', 'type': 'education', 'lineage': ['https://openalex.org/I100066346']}, {'id': 'https://openalex.org/I4210121626', 'display_name': 'Signal Processing (United States)', 'ror': 'https://ror.org/021gzyw51', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I4210121626']}], 'countries': ['DE', 'US'], 'is_corresponding': False, 'raw_author_name': 'Faezeh Fallah', 'raw_affiliation_strings': ['Institute of Signal Processing and System Theory, University of Stuttgart'], 'affiliations': [{'raw_affiliation_string': 'Institute of Signal Processing and System Theory, University of Stuttgart', 'institution_ids': ['https://openalex.org/I100066346', 'https://openalex.org/I4210121626']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5101717968', 'display_name': 'Bin Yang', 'orcid': 'https://orcid.org/0000-0002-8322-117X'}, 'institutions': [{'id': 'https://openalex.org/I100066346', 'display_name': 'University of Stuttgart', 'ror': 'https://ror.org/04vnq7t77', 'country_code': 'DE', 'type': 'education', 'lineage': ['https://openalex.org/I100066346']}, {'id': 'https://openalex.org/I4210121626', 'display_name': 'Signal Processing (United States)', 'ror': 'https://ror.org/021gzyw51', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I4210121626']}], 'countries': ['DE', 'US'], 'is_corresponding': False, 'raw_author_name': 'Bin Yang', 'raw_affiliation_strings': ['Institute of Signal Processing and System Theory, University of Stuttgart'], 'affiliations': [{'raw_affiliation_string': 'Institute of Signal Processing and System Theory, University of Stuttgart', 'institution_ids': ['https://openalex.org/I100066346', 'https://openalex.org/I4210121626']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5032266841', 'display_name': 'Fabian Bamberg', 'orcid': 'https://orcid.org/0000-0002-7460-3942'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Fabian Bamberg', 'raw_affiliation_strings': ['Department of Diagnostic and Interventional Radiology, University Clinic of Tübingen'], 'affiliations': [{'raw_affiliation_string': 'Department of Diagnostic and Interventional Radiology, University Clinic of Tübingen', 'institution_ids': []}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.241, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 5, 'citation_normalized_percentile': {'value': 0.595064, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 79, 'max': 81}, 'biblio': {'volume': '19', 'issue': None, 'first_page': '251', 'last_page': '255'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9965, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9965, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10052', 'display_name': 'Medical Image Segmentation Techniques', 'score': 0.9896, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10812', 'display_name': 'Human Pose and Action Recognition', 'score': 0.9879, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/random-walker-algorithm', 'display_name': 'Random walker algorithm', 'score': 0.67281955}], 'concepts': [{'id': 'https://openalex.org/C89600930', 'wikidata': 'https://www.wikidata.org/wiki/Q1423946', 'display_name': 'Segmentation', 'level': 2, 'score': 0.8422017}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7264821}, {'id': 'https://openalex.org/C105045736', 'wikidata': 'https://www.wikidata.org/wiki/Q7292002', 'display_name': 'Random walker algorithm', 'level': 3, 'score': 0.67281955}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.66434896}, {'id': 'https://openalex.org/C2776673561', 'wikidata': 'https://www.wikidata.org/wiki/Q655357', 'display_name': 'Atlas (anatomy)', 'level': 2, 'score': 0.62691057}, {'id': 'https://openalex.org/C143409427', 'wikidata': 'https://www.wikidata.org/wiki/Q161238', 'display_name': 'Magnetic resonance imaging', 'level': 2, 'score': 0.60586417}, {'id': 'https://openalex.org/C124504099', 'wikidata': 'https://www.wikidata.org/wiki/Q56933', 'display_name': 'Image segmentation', 'level': 3, 'score': 0.5640694}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.5337713}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.49557173}, {'id': 'https://openalex.org/C49937458', 'wikidata': 'https://www.wikidata.org/wiki/Q2599292', 'display_name': 'Probabilistic logic', 'level': 2, 'score': 0.44690555}, {'id': 'https://openalex.org/C45374587', 'wikidata': 'https://www.wikidata.org/wiki/Q12525525', 'display_name': 'Computation', 'level': 2, 'score': 0.43102327}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.34172752}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.1707173}, {'id': 'https://openalex.org/C105702510', 'wikidata': 'https://www.wikidata.org/wiki/Q514', 'display_name': 'Anatomy', 'level': 1, 'score': 0.16351599}, {'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C126838900', 'wikidata': 'https://www.wikidata.org/wiki/Q77604', 'display_name': 'Radiology', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.23919/eusipco.2017.8081207', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607854', 'display_name': '2021 29th European Signal Processing Conference (EUSIPCO)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://doi.org/10.5281/zenodo.1159192', 'pdf_url': 'https://zenodo.org/records/1159192/files/1570339605.pdf', 'source': {'id': 'https://openalex.org/S4306400562', 'display_name': 'Zenodo (CERN European Organization for Nuclear Research)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I67311998', 'host_organization_name': 'European Organization for Nuclear Research', 'host_organization_lineage': ['https://openalex.org/I67311998'], 'host_organization_lineage_names': ['European Organization for Nuclear Research'], 'type': 'repository'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.5281/zenodo.1159192', 'pdf_url': 'https://zenodo.org/records/1159192/files/1570339605.pdf', 'source': {'id': 'https://openalex.org/S4306400562', 'display_name': 'Zenodo (CERN European Organization for Nuclear Research)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I67311998', 'host_organization_name': 'European Organization for Nuclear Research', 'host_organization_lineage': ['https://openalex.org/I67311998'], 'host_organization_lineage_names': ['European Organization for Nuclear Research'], 'type': 'repository'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/6', 'display_name': 'Clean water and sanitation', 'score': 0.85}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 15, 'referenced_works': ['https://openalex.org/W1967268147', 'https://openalex.org/W1985263919', 'https://openalex.org/W1986399714', 'https://openalex.org/W2032963739', 'https://openalex.org/W2047443393', 'https://openalex.org/W2078237160', 'https://openalex.org/W2109154320', 'https://openalex.org/W2114650767', 'https://openalex.org/W2125637308', 'https://openalex.org/W2145023731', 'https://openalex.org/W2157853947', 'https://openalex.org/W2160368358', 'https://openalex.org/W2163096274', 'https://openalex.org/W2168463767', 'https://openalex.org/W74568156'], 'related_works': ['https://openalex.org/W2790543485', 'https://openalex.org/W2543781851', 'https://openalex.org/W2373521488', 'https://openalex.org/W2324878645', 'https://openalex.org/W2314146950', 'https://openalex.org/W2148826257', 'https://openalex.org/W2130673623', 'https://openalex.org/W2120981610', 'https://openalex.org/W2011187995', 'https://openalex.org/W1522196789'], 'abstract_inverted_index': {'Automatic': [0], 'segmentation': [1, 35, 78, 172], 'of': [2, 12, 36, 51, 79, 94, 110, 139, 152], 'distinct': [3], 'muscles': [4, 37, 53, 80], 'is': [5, 43, 124, 174], 'a': [6, 21, 71, 111], 'crucial': [7], 'step': [8], 'for': [9, 29, 76, 170, 186], 'quantitative': [10], 'analysis': [11], "muscle's": [13], 'tissue': [14, 24], 'properties.': [15], 'Magnetic': [16], 'resonance': [17], '(MR)': [18], 'imaging': [19, 42], 'provides': [20], 'superior': [22], 'soft': [23], 'contrast': [25], 'and': [26, 49, 56, 91, 107, 143, 149, 165, 173], 'noninvasive': [27], 'means': [28], 'assessing': [30], 'muscular': [31], 'characteristics.': [32], 'However,': [33], 'automatic': [34, 74, 137], 'using': [38], 'common': [39], 'morphological': [40], 'MR': [41, 83], 'very': [44], 'challenging': [45], 'as': [46], 'the': [47, 57, 88, 95, 101, 104, 108, 117, 128, 132, 140, 150, 160, 166, 180], 'intensities': [48, 129, 148, 151], 'textures': [50], 'adjacent': [52, 153], 'are': [54, 61], 'similar': [55], 'boundaries': [58], 'between': [59, 146], 'them': [60], 'mostly': [62], 'invisible': [63], 'or': [64], 'discontinuous.': [65], 'In': [66], 'this': [67], 'paper,': [68], 'we': [69], 'propose': [70], 'novel': [72], 'fully': [73], 'framework': [75, 86], '3D': [77, 89], 'on': [81], 'water': [82], 'images.': [84], 'This': [85, 135], 'generates': [87], 'average': [90], 'probabilistic': [92], 'atlases': [93], 'targeted': [96, 141], 'muscle': [97, 121, 142, 171, 183], 'to': [98, 126, 131, 177], 'automatically': [99], 'define': [100], 'labeled': [102], 'seeds,': [103], 'edges': [105], 'weights,': [106], 'constraints': [109], 'constrained': [112], 'Random': [113], 'Walker': [114, 163], 'algorithm.': [115], 'Also,': [116], 'low-pass': [118], 'filtered': [119], 'atlas-derived': [120], 'probability': [122], 'map': [123], 'used': [125, 185], 'augment': [127], 'prior': [130], 'graph-based': [133], 'segmentation.': [134], 'enables': [136], 'localization': [138], 'enforces': [144], 'dissimilarities': [145], 'its': [147], 'lean': [154], 'tissues.': [155], 'The': [156], 'proposed': [157], 'algorithm': [158, 164], 'outperforms': [159], 'original': [161], 'random': [162], 'conventional': [167], 'multi-atlas': [168], 'registration': [169], 'less': [175], 'sensitive': [176], 'errors': [178], 'in': [179], 'manually': [181], 'segmented': [182], 'masks': [184], 'training': [187], '(atlas': [188], 'computation).': [189]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2765482516', 'counts_by_year': [{'year': 2021, 'cited_by_count': 1}, {'year': 2020, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 1}, {'year': 2018, 'cited_by_count': 2}], 'updated_date': '2024-12-15T22:20:39.052882', 'created_date': '2017-11-10'}