Title: Role of centrifugal force on solid-liquid two-phase flow through rotating channel
Abstract:The work reveals an interesting and contra-intuitive observation in numerically simulating the solid-liquid flow field through a straight rotating channel. A previous study (Gupta and Pagalthivarthi, ...The work reveals an interesting and contra-intuitive observation in numerically simulating the solid-liquid flow field through a straight rotating channel. A previous study (Gupta and Pagalthivarthi, 2007) showed that at moderate rotation rates, increase in rotational speed results in an asymmetric velocity profile, because the Coriolis acceleration tends to increase the level of turbulence on the pressure-side and decrease on the suction-side. The present work contra-intuitively shows that higher rotation rates enhance centrifugal acceleration that pushes the velocity maxima towards the pressure-side of the channel. Centrifugal acceleration is also seen to play a prominent role with increase in inlet concentration.Read More
Publication Year: 2017
Publication Date: 2017-01-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 1
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot