Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2621665209', 'doi': None, 'title': 'An Ordinal Regression Model Based on Logistic Regression Models and Its Fast Sparse Bayesian Learning', 'display_name': 'An Ordinal Regression Model Based on Logistic Regression Models and Its Fast Sparse Bayesian Learning', 'publication_year': 2012, 'publication_date': '2012-10-31', 'ids': {'openalex': 'https://openalex.org/W2621665209', 'mag': '2621665209'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://www.ieice.org/ken/paper/20121108b0yV/eng/', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306512848', 'display_name': 'IEICE Technical Report; IEICE Tech. Rep.', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': [], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5019552345', 'display_name': 'Kazuhisa Nagashima', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Kazuhisa Nagashima', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5049594366', 'display_name': 'Inoue Masato', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Masato Inoue', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.0, 'has_fulltext': False, 'cited_by_count': 0, 'citation_normalized_percentile': {'value': 0.0, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 0, 'max': 64}, 'biblio': {'volume': '112', 'issue': '279', 'first_page': '381', 'last_page': '385'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T13717', 'display_name': 'Advanced Algorithms and Applications', 'score': 0.5748, 'subfield': {'id': 'https://openalex.org/subfields/2207', 'display_name': 'Control and Systems Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T13717', 'display_name': 'Advanced Algorithms and Applications', 'score': 0.5748, 'subfield': {'id': 'https://openalex.org/subfields/2207', 'display_name': 'Control and Systems Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T13734', 'display_name': 'Advanced Computational Techniques and Applications', 'score': 0.5293, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T14249', 'display_name': 'Water Quality Monitoring and Analysis', 'score': 0.4712, 'subfield': {'id': 'https://openalex.org/subfields/2311', 'display_name': 'Industrial and Manufacturing Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/logistic-model-tree', 'display_name': 'Logistic model tree', 'score': 0.541442}, {'id': 'https://openalex.org/keywords/ordered-logit', 'display_name': 'Ordered logit', 'score': 0.4911296}, {'id': 'https://openalex.org/keywords/factor-regression-model', 'display_name': 'Factor regression model', 'score': 0.4174751}, {'id': 'https://openalex.org/keywords/local-regression', 'display_name': 'Local regression', 'score': 0.4155294}], 'concepts': [{'id': 'https://openalex.org/C110313322', 'wikidata': 'https://www.wikidata.org/wiki/Q7100793', 'display_name': 'Ordinal regression', 'level': 2, 'score': 0.7151146}, {'id': 'https://openalex.org/C151956035', 'wikidata': 'https://www.wikidata.org/wiki/Q1132755', 'display_name': 'Logistic regression', 'level': 2, 'score': 0.69748896}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.56928545}, {'id': 'https://openalex.org/C61722155', 'wikidata': 'https://www.wikidata.org/wiki/Q6667643', 'display_name': 'Logistic model tree', 'level': 3, 'score': 0.541442}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.5239656}, {'id': 'https://openalex.org/C83546350', 'wikidata': 'https://www.wikidata.org/wiki/Q1139051', 'display_name': 'Regression', 'level': 2, 'score': 0.5155892}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.5139782}, {'id': 'https://openalex.org/C152877465', 'wikidata': 'https://www.wikidata.org/wiki/Q208042', 'display_name': 'Regression analysis', 'level': 2, 'score': 0.5031733}, {'id': 'https://openalex.org/C87227347', 'wikidata': 'https://www.wikidata.org/wiki/Q7100713', 'display_name': 'Ordered logit', 'level': 2, 'score': 0.4911296}, {'id': 'https://openalex.org/C117568660', 'wikidata': 'https://www.wikidata.org/wiki/Q1650843', 'display_name': 'Multinomial logistic regression', 'level': 2, 'score': 0.49095157}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.4857867}, {'id': 'https://openalex.org/C37903108', 'wikidata': 'https://www.wikidata.org/wiki/Q4874474', 'display_name': 'Bayesian linear regression', 'level': 4, 'score': 0.4691996}, {'id': 'https://openalex.org/C85461838', 'wikidata': 'https://www.wikidata.org/wiki/Q7100785', 'display_name': 'Ordinal data', 'level': 2, 'score': 0.46620357}, {'id': 'https://openalex.org/C90157343', 'wikidata': 'https://www.wikidata.org/wiki/Q5188196', 'display_name': 'Cross-sectional regression', 'level': 4, 'score': 0.43546516}, {'id': 'https://openalex.org/C93698799', 'wikidata': 'https://www.wikidata.org/wiki/Q5428730', 'display_name': 'Factor regression model', 'level': 5, 'score': 0.4174751}, {'id': 'https://openalex.org/C60316415', 'wikidata': 'https://www.wikidata.org/wiki/Q6664520', 'display_name': 'Local regression', 'level': 4, 'score': 0.4155294}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.41176862}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.4011303}, {'id': 'https://openalex.org/C160234255', 'wikidata': 'https://www.wikidata.org/wiki/Q812535', 'display_name': 'Bayesian inference', 'level': 3, 'score': 0.33820155}, {'id': 'https://openalex.org/C64946054', 'wikidata': 'https://www.wikidata.org/wiki/Q4874476', 'display_name': 'Bayesian multivariate linear regression', 'level': 3, 'score': 0.2974056}, {'id': 'https://openalex.org/C32224588', 'wikidata': 'https://www.wikidata.org/wiki/Q7250175', 'display_name': 'Proper linear model', 'level': 4, 'score': 0.29663795}, {'id': 'https://openalex.org/C120068334', 'wikidata': 'https://www.wikidata.org/wiki/Q45343', 'display_name': 'Polynomial regression', 'level': 3, 'score': 0.1669738}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://www.ieice.org/ken/paper/20121108b0yV/eng/', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306512848', 'display_name': 'IEICE Technical Report; IEICE Tech. Rep.', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 0, 'referenced_works': [], 'related_works': ['https://openalex.org/W3197367721', 'https://openalex.org/W3195224509', 'https://openalex.org/W3136037425', 'https://openalex.org/W3135689308', 'https://openalex.org/W3109614413', 'https://openalex.org/W3098530164', 'https://openalex.org/W3093483861', 'https://openalex.org/W3023315192', 'https://openalex.org/W2981837051', 'https://openalex.org/W2952308379', 'https://openalex.org/W2903814153', 'https://openalex.org/W2899292816', 'https://openalex.org/W2593415463', 'https://openalex.org/W2379327283', 'https://openalex.org/W2363015914', 'https://openalex.org/W2137068738', 'https://openalex.org/W2130812836', 'https://openalex.org/W2033531685', 'https://openalex.org/W1584033601', 'https://openalex.org/W1566768190'], 'abstract_inverted_index': None, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2621665209', 'counts_by_year': [], 'updated_date': '2024-12-12T07:44:13.492593', 'created_date': '2017-06-15'}