Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2565639579', 'doi': 'https://doi.org/10.1109/cvpr.2017.106', 'title': 'Feature Pyramid Networks for Object Detection', 'display_name': 'Feature Pyramid Networks for Object Detection', 'publication_year': 2017, 'publication_date': '2017-07-01', 'ids': {'openalex': 'https://openalex.org/W2565639579', 'doi': 'https://doi.org/10.1109/cvpr.2017.106', 'mag': '2565639579'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/cvpr.2017.106', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/1612.03144', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5052768778', 'display_name': 'Tsung-Yi Lin', 'orcid': 'https://orcid.org/0000-0003-4819-0627'}, 'institutions': [{'id': 'https://openalex.org/I2252078561', 'display_name': 'Meta (Israel)', 'ror': 'https://ror.org/02388em19', 'country_code': 'IL', 'type': 'company', 'lineage': ['https://openalex.org/I2252078561', 'https://openalex.org/I4210114444']}, {'id': 'https://openalex.org/I205783295', 'display_name': 'Cornell University', 'ror': 'https://ror.org/05bnh6r87', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I205783295']}], 'countries': ['IL', 'US'], 'is_corresponding': False, 'raw_author_name': 'Tsung-Yi Lin', 'raw_affiliation_strings': ['[Cornell University, Cornell Tech, Facebook AI Research (FAIR)]'], 'affiliations': [{'raw_affiliation_string': '[Cornell University, Cornell Tech, Facebook AI Research (FAIR)]', 'institution_ids': ['https://openalex.org/I2252078561', 'https://openalex.org/I205783295']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5057866698', 'display_name': 'Piotr Dollár', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I2252078561', 'display_name': 'Meta (Israel)', 'ror': 'https://ror.org/02388em19', 'country_code': 'IL', 'type': 'company', 'lineage': ['https://openalex.org/I2252078561', 'https://openalex.org/I4210114444']}], 'countries': ['IL'], 'is_corresponding': False, 'raw_author_name': 'Piotr Dollar', 'raw_affiliation_strings': ['Facebook AI Research (FAIR)'], 'affiliations': [{'raw_affiliation_string': 'Facebook AI Research (FAIR)', 'institution_ids': ['https://openalex.org/I2252078561']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5049246408', 'display_name': 'Ross Girshick', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I2252078561', 'display_name': 'Meta (Israel)', 'ror': 'https://ror.org/02388em19', 'country_code': 'IL', 'type': 'company', 'lineage': ['https://openalex.org/I2252078561', 'https://openalex.org/I4210114444']}], 'countries': ['IL'], 'is_corresponding': False, 'raw_author_name': 'Ross Girshick', 'raw_affiliation_strings': ['Facebook AI Research (FAIR)'], 'affiliations': [{'raw_affiliation_string': 'Facebook AI Research (FAIR)', 'institution_ids': ['https://openalex.org/I2252078561']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100700361', 'display_name': 'Kaiming He', 'orcid': 'https://orcid.org/0000-0001-7318-9658'}, 'institutions': [{'id': 'https://openalex.org/I2252078561', 'display_name': 'Meta (Israel)', 'ror': 'https://ror.org/02388em19', 'country_code': 'IL', 'type': 'company', 'lineage': ['https://openalex.org/I2252078561', 'https://openalex.org/I4210114444']}], 'countries': ['IL'], 'is_corresponding': False, 'raw_author_name': 'Kaiming He', 'raw_affiliation_strings': ['Facebook AI Research (FAIR)'], 'affiliations': [{'raw_affiliation_string': 'Facebook AI Research (FAIR)', 'institution_ids': ['https://openalex.org/I2252078561']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5101647390', 'display_name': 'Bharath Hariharan', 'orcid': 'https://orcid.org/0000-0002-2309-4703'}, 'institutions': [{'id': 'https://openalex.org/I2252078561', 'display_name': 'Meta (Israel)', 'ror': 'https://ror.org/02388em19', 'country_code': 'IL', 'type': 'company', 'lineage': ['https://openalex.org/I2252078561', 'https://openalex.org/I4210114444']}], 'countries': ['IL'], 'is_corresponding': False, 'raw_author_name': 'Bharath Hariharan', 'raw_affiliation_strings': ['Facebook AI Research (FAIR)'], 'affiliations': [{'raw_affiliation_string': 'Facebook AI Research (FAIR)', 'institution_ids': ['https://openalex.org/I2252078561']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5018609918', 'display_name': 'Serge Belongie', 'orcid': 'https://orcid.org/0000-0002-0388-5217'}, 'institutions': [{'id': 'https://openalex.org/I205783295', 'display_name': 'Cornell University', 'ror': 'https://ror.org/05bnh6r87', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I205783295']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Serge Belongie', 'raw_affiliation_strings': ['[Cornell University, Cornell Tech]'], 'affiliations': [{'raw_affiliation_string': '[Cornell University, Cornell Tech]', 'institution_ids': ['https://openalex.org/I205783295']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 22469, 'citation_normalized_percentile': {'value': 0.999701, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10627', 'display_name': 'Advanced Image and Video Retrieval Techniques', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11307', 'display_name': 'Domain Adaptation and Few-Shot Learning', 'score': 0.9965, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/pyramid', 'display_name': 'Pyramid (geometry)', 'score': 0.8188304}, {'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.76886857}, {'id': 'https://openalex.org/keywords/benchmark', 'display_name': 'Benchmark (surveying)', 'score': 0.6787486}, {'id': 'https://openalex.org/keywords/semantic-feature', 'display_name': 'Semantic feature', 'score': 0.4711584}], 'concepts': [{'id': 'https://openalex.org/C142575187', 'wikidata': 'https://www.wikidata.org/wiki/Q3358290', 'display_name': 'Pyramid (geometry)', 'level': 2, 'score': 0.8188304}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7956832}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.76886857}, {'id': 'https://openalex.org/C2776151529', 'wikidata': 'https://www.wikidata.org/wiki/Q3045304', 'display_name': 'Object detection', 'level': 3, 'score': 0.7056351}, {'id': 'https://openalex.org/C185798385', 'wikidata': 'https://www.wikidata.org/wiki/Q1161707', 'display_name': 'Benchmark (surveying)', 'level': 2, 'score': 0.6787486}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.6236135}, {'id': 'https://openalex.org/C52622490', 'wikidata': 'https://www.wikidata.org/wiki/Q1026626', 'display_name': 'Feature extraction', 'level': 2, 'score': 0.570779}, {'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.57062066}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.56573975}, {'id': 'https://openalex.org/C2780801425', 'wikidata': 'https://www.wikidata.org/wiki/Q5164392', 'display_name': 'Construct (python library)', 'level': 2, 'score': 0.5277898}, {'id': 'https://openalex.org/C165696696', 'wikidata': 'https://www.wikidata.org/wiki/Q11287', 'display_name': 'Exploit', 'level': 2, 'score': 0.47648972}, {'id': 'https://openalex.org/C2781122975', 'wikidata': 'https://www.wikidata.org/wiki/Q16928266', 'display_name': 'Semantic feature', 'level': 2, 'score': 0.4711584}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.45934755}, {'id': 'https://openalex.org/C31170391', 'wikidata': 'https://www.wikidata.org/wiki/Q188619', 'display_name': 'Hierarchy', 'level': 2, 'score': 0.41439193}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.07417357}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.062847465}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C38652104', 'wikidata': 'https://www.wikidata.org/wiki/Q3510521', 'display_name': 'Computer security', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C13280743', 'wikidata': 'https://www.wikidata.org/wiki/Q131089', 'display_name': 'Geodesy', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C205649164', 'wikidata': 'https://www.wikidata.org/wiki/Q1071', 'display_name': 'Geography', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C34447519', 'wikidata': 'https://www.wikidata.org/wiki/Q179522', 'display_name': 'Market economy', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/cvpr.2017.106', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1612.03144', 'pdf_url': 'https://arxiv.org/pdf/1612.03144', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1612.03144', 'pdf_url': 'https://arxiv.org/pdf/1612.03144', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/11', 'score': 0.57, 'display_name': 'Sustainable cities and communities'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 44, 'referenced_works': ['https://openalex.org/W1536680647', 'https://openalex.org/W1686810756', 'https://openalex.org/W1817277359', 'https://openalex.org/W1861492603', 'https://openalex.org/W1901129140', 'https://openalex.org/W1903029394', 'https://openalex.org/W1932624639', 'https://openalex.org/W1948751323', 'https://openalex.org/W2056695679', 'https://openalex.org/W2088049833', 'https://openalex.org/W2102605133', 'https://openalex.org/W2117287331', 'https://openalex.org/W2117539524', 'https://openalex.org/W2125556102', 'https://openalex.org/W2125713050', 'https://openalex.org/W2147800946', 'https://openalex.org/W2151103935', 'https://openalex.org/W2161969291', 'https://openalex.org/W2163605009', 'https://openalex.org/W2168356304', 'https://openalex.org/W2179352600', 'https://openalex.org/W2194775991', 'https://openalex.org/W2288122362', 'https://openalex.org/W2307770531', 'https://openalex.org/W2317851288', 'https://openalex.org/W2322480645', 'https://openalex.org/W2490270993', 'https://openalex.org/W2508741746', 'https://openalex.org/W2613718673', 'https://openalex.org/W2950981687', 'https://openalex.org/W2953106684', 'https://openalex.org/W2962835968', 'https://openalex.org/W2962992847', 'https://openalex.org/W2963150697', 'https://openalex.org/W2963516811', 'https://openalex.org/W2963542991', 'https://openalex.org/W2963544187', 'https://openalex.org/W2963549237', 'https://openalex.org/W2964137095', 'https://openalex.org/W2964297960', 'https://openalex.org/W3098722327', 'https://openalex.org/W3106250896', 'https://openalex.org/W809122546', 'https://openalex.org/W8437397'], 'related_works': ['https://openalex.org/W3207760230', 'https://openalex.org/W3129447544', 'https://openalex.org/W3121197456', 'https://openalex.org/W3105958285', 'https://openalex.org/W2997419729', 'https://openalex.org/W2953187864', 'https://openalex.org/W2888728082', 'https://openalex.org/W17155033', 'https://openalex.org/W1590307681', 'https://openalex.org/W1496222301'], 'abstract_inverted_index': {'Feature': [0, 85], 'pyramids': [1, 59], 'are': [2, 26, 35], 'a': [3, 84, 93, 101, 144, 149], 'basic': [4, 102], 'component': [5], 'in': [6, 21, 97], 'recognition': [7], 'systems': [8], 'for': [9, 72], 'detecting': [10], 'objects': [11], 'at': [12, 78, 140], 'different': [13], 'scales.': [14, 80], 'But': [15], 'pyramid': [16], 'representations': [17], 'have': [18], 'been': [19], 'avoided': [20], 'recent': [22], 'object': [23, 156], 'detectors': [24], 'that': [25], 'based': [27], 'on': [28, 112, 143], 'deep': [29, 53], 'convolutional': [30, 54], 'networks,': [31], 'partially': [32], 'because': [33], 'they': [34], 'slow': [36], 'to': [37, 56, 154], 'compute': [38], 'and': [39, 119, 146, 151], 'memory': [40], 'intensive.': [41], 'In': [42, 134], 'this': [43], 'paper,': [44], 'we': [45], 'exploit': [46], 'the': [47, 113, 129], 'inherent': [48], 'multi-scale,': [49], 'pyramidal': [50], 'hierarchy': [51], 'of': [52], 'networks': [55], 'construct': [57], 'feature': [58, 76, 95], 'with': [60, 67], 'marginal': [61], 'extra': [62], 'cost.': [63], 'A': [64], 'top-down': [65], 'architecture': [66], 'lateral': [68], 'connections': [69], 'is': [70, 148], 'developed': [71], 'building': [73], 'high-level': [74], 'semantic': [75], 'maps': [77], 'all': [79, 122], 'This': [81], 'architecture,': [82], 'called': [83], 'Pyramid': [86], 'Network': [87], '(FPN),': [88], 'shows': [89], 'significant': [90], 'improvement': [91], 'as': [92], 'generic': [94], 'extractor': [96], 'several': [98], 'applications.': [99], 'Using': [100], 'Faster': [103], 'R-CNN': [104], 'system,': [105], 'our': [106, 136], 'method': [107, 137], 'achieves': [108], 'state-of-the-art': [109], 'single-model': [110, 124], 'results': [111], 'COCO': [114, 130], 'detection': [115], 'benchmark': [116], 'without': [117], 'bells': [118], 'whistles,': [120], 'surpassing': [121], 'existing': [123], 'entries': [125], 'including': [126], 'those': [127], 'from': [128], '2016': [131], 'challenge': [132], 'winners.': [133], 'addition,': [135], 'can': [138], 'run': [139], '5': [141], 'FPS': [142], 'GPU': [145], 'thus': [147], 'practical': [150], 'accurate': [152], 'solution': [153], 'multi-scale': [155], 'detection.': [157], 'Code': [158], 'will': [159], 'be': [160], 'made': [161], 'publicly': [162], 'available.': [163]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2565639579', 'counts_by_year': [{'year': 2024, 'cited_by_count': 3214}, {'year': 2023, 'cited_by_count': 4469}, {'year': 2022, 'cited_by_count': 3814}, {'year': 2021, 'cited_by_count': 3893}, {'year': 2020, 'cited_by_count': 2836}, {'year': 2019, 'cited_by_count': 1982}, {'year': 2018, 'cited_by_count': 597}, {'year': 2017, 'cited_by_count': 80}, {'year': 2016, 'cited_by_count': 1}], 'updated_date': '2024-12-21T09:32:13.666476', 'created_date': '2017-01-06'}