Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2561197050', 'doi': 'https://doi.org/10.1190/int-2016-0025.1', 'title': 'Bayesian discriminant analysis of lithofacies integrate the Fisher transformation and the kernel function estimation', 'display_name': 'Bayesian discriminant analysis of lithofacies integrate the Fisher transformation and the kernel function estimation', 'publication_year': 2017, 'publication_date': '2017-01-03', 'ids': {'openalex': 'https://openalex.org/W2561197050', 'doi': 'https://doi.org/10.1190/int-2016-0025.1', 'mag': '2561197050'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1190/int-2016-0025.1', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4210239846', 'display_name': 'Interpretation', 'issn_l': '2324-8858', 'issn': ['2324-8858', '2324-8866'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310316678', 'host_organization_name': 'Society of Exploration Geophysicists', 'host_organization_lineage': ['https://openalex.org/P4310316678'], 'host_organization_lineage_names': ['Society of Exploration Geophysicists'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5088413477', 'display_name': 'Xingye Liu', 'orcid': 'https://orcid.org/0000-0002-9193-1075'}, 'institutions': [{'id': 'https://openalex.org/I204553293', 'display_name': 'China University of Petroleum, Beijing', 'ror': 'https://ror.org/041qf4r12', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I204553293']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Xingye Liu', 'raw_affiliation_strings': ['China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:'], 'affiliations': [{'raw_affiliation_string': 'China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:', 'institution_ids': ['https://openalex.org/I204553293']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100714668', 'display_name': 'Jingye Li', 'orcid': 'https://orcid.org/0000-0003-2556-5959'}, 'institutions': [{'id': 'https://openalex.org/I204553293', 'display_name': 'China University of Petroleum, Beijing', 'ror': 'https://ror.org/041qf4r12', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I204553293']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Jingye Li', 'raw_affiliation_strings': ['China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:'], 'affiliations': [{'raw_affiliation_string': 'China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:', 'institution_ids': ['https://openalex.org/I204553293']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100373745', 'display_name': 'Xiaohong Chen', 'orcid': 'https://orcid.org/0000-0002-9797-8384'}, 'institutions': [{'id': 'https://openalex.org/I204553293', 'display_name': 'China University of Petroleum, Beijing', 'ror': 'https://ror.org/041qf4r12', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I204553293']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Xiaohong Chen', 'raw_affiliation_strings': ['China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:'], 'affiliations': [{'raw_affiliation_string': 'China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:', 'institution_ids': ['https://openalex.org/I204553293']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5004416880', 'display_name': 'Lin Zhou', 'orcid': 'https://orcid.org/0000-0002-8997-5052'}, 'institutions': [{'id': 'https://openalex.org/I204553293', 'display_name': 'China University of Petroleum, Beijing', 'ror': 'https://ror.org/041qf4r12', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I204553293']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Lin Zhou', 'raw_affiliation_strings': ['China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:'], 'affiliations': [{'raw_affiliation_string': 'China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:', 'institution_ids': ['https://openalex.org/I204553293']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5101015310', 'display_name': 'Kangkang Guo', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I204553293', 'display_name': 'China University of Petroleum, Beijing', 'ror': 'https://ror.org/041qf4r12', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I204553293']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Kangkang Guo', 'raw_affiliation_strings': ['China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:'], 'affiliations': [{'raw_affiliation_string': 'China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, Beijing, China. E-mail:', 'institution_ids': ['https://openalex.org/I204553293']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 1.226, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 18, 'citation_normalized_percentile': {'value': 0.783554, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 90, 'max': 91}, 'biblio': {'volume': '5', 'issue': '2', 'first_page': 'SE1', 'last_page': 'SE10'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10399', 'display_name': 'Hydrocarbon exploration and reservoir analysis', 'score': 0.9992, 'subfield': {'id': 'https://openalex.org/subfields/2211', 'display_name': 'Mechanics of Materials'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10399', 'display_name': 'Hydrocarbon exploration and reservoir analysis', 'score': 0.9992, 'subfield': {'id': 'https://openalex.org/subfields/2211', 'display_name': 'Mechanics of Materials'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12157', 'display_name': 'Geochemistry and Geologic Mapping', 'score': 0.9978, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10635', 'display_name': 'Hydraulic Fracturing and Reservoir Analysis', 'score': 0.9935, 'subfield': {'id': 'https://openalex.org/subfields/2210', 'display_name': 'Mechanical Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/optimal-discriminant-analysis', 'display_name': 'Optimal discriminant analysis', 'score': 0.5922148}, {'id': 'https://openalex.org/keywords/discriminant-function-analysis', 'display_name': 'Discriminant function analysis', 'score': 0.54231226}, {'id': 'https://openalex.org/keywords/fisher-kernel', 'display_name': 'Fisher kernel', 'score': 0.5039112}, {'id': 'https://openalex.org/keywords/kernel', 'display_name': 'Kernel (algebra)', 'score': 0.4224965}], 'concepts': [{'id': 'https://openalex.org/C69738355', 'wikidata': 'https://www.wikidata.org/wiki/Q1228929', 'display_name': 'Linear discriminant analysis', 'level': 2, 'score': 0.62990266}, {'id': 'https://openalex.org/C104500394', 'wikidata': 'https://www.wikidata.org/wiki/Q17104912', 'display_name': 'Optimal discriminant analysis', 'level': 3, 'score': 0.5922148}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.59053063}, {'id': 'https://openalex.org/C41771347', 'wikidata': 'https://www.wikidata.org/wiki/Q1228929', 'display_name': 'Discriminant function analysis', 'level': 2, 'score': 0.54231226}, {'id': 'https://openalex.org/C181367576', 'wikidata': 'https://www.wikidata.org/wiki/Q6394184', 'display_name': 'Kernel Fisher discriminant analysis', 'level': 4, 'score': 0.5373643}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.5181126}, {'id': 'https://openalex.org/C207798031', 'wikidata': 'https://www.wikidata.org/wiki/Q8563425', 'display_name': 'Fisher kernel', 'level': 5, 'score': 0.5039112}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.47939396}, {'id': 'https://openalex.org/C9810830', 'wikidata': 'https://www.wikidata.org/wiki/Q635384', 'display_name': 'Maximum a posteriori estimation', 'level': 3, 'score': 0.4555872}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.4464483}, {'id': 'https://openalex.org/C74193536', 'wikidata': 'https://www.wikidata.org/wiki/Q574844', 'display_name': 'Kernel (algebra)', 'level': 2, 'score': 0.4224965}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.42114747}, {'id': 'https://openalex.org/C122280245', 'wikidata': 'https://www.wikidata.org/wiki/Q620622', 'display_name': 'Kernel method', 'level': 3, 'score': 0.39683032}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.34495398}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.29722527}, {'id': 'https://openalex.org/C12267149', 'wikidata': 'https://www.wikidata.org/wiki/Q282453', 'display_name': 'Support vector machine', 'level': 2, 'score': 0.20479009}, {'id': 'https://openalex.org/C49781872', 'wikidata': 'https://www.wikidata.org/wiki/Q1045555', 'display_name': 'Maximum likelihood', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C114614502', 'wikidata': 'https://www.wikidata.org/wiki/Q76592', 'display_name': 'Combinatorics', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1190/int-2016-0025.1', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4210239846', 'display_name': 'Interpretation', 'issn_l': '2324-8858', 'issn': ['2324-8858', '2324-8866'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310316678', 'host_organization_name': 'Society of Exploration Geophysicists', 'host_organization_lineage': ['https://openalex.org/P4310316678'], 'host_organization_lineage_names': ['Society of Exploration Geophysicists'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'score': 0.67, 'id': 'https://metadata.un.org/sdg/10', 'display_name': 'Reduced inequalities'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 14, 'referenced_works': ['https://openalex.org/W1573085433', 'https://openalex.org/W1980721746', 'https://openalex.org/W2001153805', 'https://openalex.org/W2030619630', 'https://openalex.org/W2112440119', 'https://openalex.org/W2125780847', 'https://openalex.org/W2150796457', 'https://openalex.org/W2165626472', 'https://openalex.org/W2319924028', 'https://openalex.org/W2335453112', 'https://openalex.org/W2368244535', 'https://openalex.org/W2383477501', 'https://openalex.org/W4285719527', 'https://openalex.org/W4299025535'], 'related_works': ['https://openalex.org/W2771098736', 'https://openalex.org/W2386228546', 'https://openalex.org/W2379687477', 'https://openalex.org/W2367582729', 'https://openalex.org/W2365801610', 'https://openalex.org/W2354551251', 'https://openalex.org/W2235563642', 'https://openalex.org/W2162393942', 'https://openalex.org/W2147350351', 'https://openalex.org/W2025089370'], 'abstract_inverted_index': {'The': [0, 236], 'accurate': [1, 265], 'identification': [2, 33, 266], 'of': [3, 16, 31, 69, 78, 89, 113, 146, 173, 218, 233, 239], 'lithofacies': [4, 220, 249], 'is': [5, 179, 203, 242], 'indispensable': [6], 'for': [7, 34], 'reservoir': [8, 103], 'parameter': [9], 'prediction.': [10], 'In': [11, 29], 'recent': [12], 'years,': [13], 'the': [14, 32, 36, 66, 76, 80, 83, 111, 116, 164, 168, 174, 186, 192, 195, 201, 206, 231, 234], 'application': [15], 'multivariate': [17, 39], 'statistical': [18, 40, 87], 'methods': [19, 41], 'has': [20], 'gained': [21], 'more': [22, 24, 151, 264], 'and': [23, 45, 49, 63, 82, 105, 119, 127, 143, 194, 247, 255, 276], 'attention': [25], 'in': [26, 75], 'petroleum': [27], 'geology.': [28], 'terms': [30], 'lithofacies,': [35], 'commonly': [37], 'used': [38], 'include': [42, 60], 'discriminant': [43, 51, 56, 67, 250], 'analysis': [44, 57], 'cluster': [46], 'analysis.': [47], 'Fisher': [48, 114, 137, 274], 'Bayesian': [50, 120, 183, 277], 'analyses': [52], 'are': [53, 134, 189], 'two': [54], 'different': [55, 70, 144], 'methods,': [58, 71], 'which': [59, 227], 'intrinsic': [61], 'advantages': [62, 112], 'disadvantages.': [64], 'Given': [65], 'efficiency': [68], 'calculation': [72], 'cost,': [73], 'difficulty': [74], 'degree': [77], 'determining': [79], 'parameters,': [81], 'ability': [84], 'to': [85, 101, 140, 191, 243], 'analyze': [86, 124], 'characteristics': [88], 'data,': [90], 'we': [91, 123], 'put': [92], 'forward': [93], 'a': [94, 129, 214, 245], 'new': [95], 'method': [96, 109, 261], 'combined': [97], 'with': [98, 268, 272], 'seismic': [99], 'information': [100], 'classify': [102], 'lithologies': [104], 'pore': [106], 'fluids.': [107], 'This': [108], 'integrates': [110], 'discrimination,': [115], 'kernel': [117, 165], 'function,': [118], 'discrimination.': [121], 'First,': [122], 'training': [125], 'data': [126, 133, 156, 188, 257], 'search': [128], 'projection': [130], 'direction.': [131], 'Then,': [132, 185], 'transformed': [135, 155, 175], 'through': [136], 'transformation': [138], 'according': [139], 'this': [141, 240], 'direction': [142], 'kinds': [145], 'facies': [147], 'can': [148, 221, 229, 262], 'be': [149, 222], 'distinguished': [150], 'efficiently': [152], 'by': [153, 158], 'exploiting': [154], 'than': [157], 'using': [159, 163], 'primitive': [160], 'data.': [161], 'Subsequently,': [162], 'function': [166, 172], 'estimates': [167], 'conditional': [169], 'probability': [170, 199, 216], 'density': [171], 'variable.': [176], 'A': [177], 'classifier': [178, 193], 'constructed': [180], 'based': [181], 'on': [182, 253], 'theory.': [184], 'pending': [187], 'input': [190], 'solution': [196], 'whose': [197], 'posteriori': [198, 215], 'reaches': [200], 'maximum': [202], 'extracted': [204], 'as': [205, 224], 'predicted': [207, 219], 'result': [208], 'at': [209], 'each': [210], 'grid': [211], 'node.': [212], 'An': [213], 'distribution': [217], 'acquired': [223], 'well,': [225], 'from': [226], 'interpreters': [228], 'evaluate': [230], 'uncertainty': [232, 270], 'results.': [235], 'ultimate': [237], 'goal': [238], 'study': [241], 'provide': [244], 'novel': [246], 'efficient': [248], 'method.': [251], 'Tests': [252], 'model': [254], 'field': [256], 'indicate': [258], 'that': [259], 'our': [260], 'obtain': [263], 'results': [267], 'less': [269], 'compared': [271], 'conventional': [273], 'approaches': [275], 'methods.': [278]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2561197050', 'counts_by_year': [{'year': 2023, 'cited_by_count': 3}, {'year': 2022, 'cited_by_count': 2}, {'year': 2021, 'cited_by_count': 7}, {'year': 2020, 'cited_by_count': 3}, {'year': 2019, 'cited_by_count': 2}, {'year': 2018, 'cited_by_count': 1}], 'updated_date': '2025-01-06T13:31:19.810453', 'created_date': '2017-01-06'}