Title: Compressive Sampling for Signal Classification
Abstract:Compressive sampling (CS), also called compressed sensing, entails making observations of an unknown signal by projecting it onto random vectors. Recent theoretical results show that if the signal is ...Compressive sampling (CS), also called compressed sensing, entails making observations of an unknown signal by projecting it onto random vectors. Recent theoretical results show that if the signal is sparse (or nearly sparse) in some basis, then with high probability such observations essentially encode the salient information in the signal. Further, the signal can be reconstructed from these "random projections," even when the number of observations is far less than the ambient signal dimension. The provable success of CS for signal reconstruction motivates the study of its potential in other applications. This paper investigates the utility of CS projection observations for signal classification (more specifically, m-ary hypothesis testing). Theoretical error bounds are derived and verified with several simulations.Read More
Publication Year: 2006
Publication Date: 2006-01-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 101
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot