Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2511037166', 'doi': 'https://doi.org/10.1137/1.9781611974348.64', 'title': 'DPClass: An Effective but Concise Discriminative Patterns-Based Classification Framework', 'display_name': 'DPClass: An Effective but Concise Discriminative Patterns-Based Classification Framework', 'publication_year': 2016, 'publication_date': '2016-06-30', 'ids': {'openalex': 'https://openalex.org/W2511037166', 'doi': 'https://doi.org/10.1137/1.9781611974348.64', 'mag': '2511037166', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/28163983', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/5287366'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1137/1.9781611974348.64', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://doi.org/10.1137/1.9781611974348.64', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5039500313', 'display_name': 'Jingbo Shang', 'orcid': 'https://orcid.org/0000-0002-7249-4404'}, 'institutions': [{'id': 'https://openalex.org/I157725225', 'display_name': 'University of Illinois Urbana-Champaign', 'ror': 'https://ror.org/047426m28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I157725225']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Jingbo Shang', 'raw_affiliation_strings': ['Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA'], 'affiliations': [{'raw_affiliation_string': 'Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA', 'institution_ids': ['https://openalex.org/I157725225']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5064143299', 'display_name': 'Wenzhu Tong', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I157725225', 'display_name': 'University of Illinois Urbana-Champaign', 'ror': 'https://ror.org/047426m28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I157725225']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Wenzhu Tong', 'raw_affiliation_strings': ['Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA'], 'affiliations': [{'raw_affiliation_string': 'Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA', 'institution_ids': ['https://openalex.org/I157725225']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5047373240', 'display_name': 'Jian Peng', 'orcid': 'https://orcid.org/0000-0002-1820-4015'}, 'institutions': [{'id': 'https://openalex.org/I19908199', 'display_name': 'National Center for Supercomputing Applications', 'ror': 'https://ror.org/03g9ch715', 'country_code': 'BG', 'type': 'facility', 'lineage': ['https://openalex.org/I19908199']}], 'countries': ['BG'], 'is_corresponding': False, 'raw_author_name': 'Jian Peng', 'raw_affiliation_strings': ['National Center for Supercomputing Applications (NCSA)'], 'affiliations': [{'raw_affiliation_string': 'National Center for Supercomputing Applications (NCSA)', 'institution_ids': ['https://openalex.org/I19908199']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5103750286', 'display_name': 'Jiawei Han', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Jiawei Han', 'raw_affiliation_strings': ['Information Trust Institute'], 'affiliations': [{'raw_affiliation_string': 'Information Trust Institute', 'institution_ids': []}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.414, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 9, 'citation_normalized_percentile': {'value': 0.858796, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 85, 'max': 86}, 'biblio': {'volume': None, 'issue': None, 'first_page': '567', 'last_page': '575'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10824', 'display_name': 'Image Retrieval and Classification Techniques', 'score': 0.9887, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10824', 'display_name': 'Image Retrieval and Classification Techniques', 'score': 0.9887, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12535', 'display_name': 'Machine Learning and Data Classification', 'score': 0.9864, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11550', 'display_name': 'Text and Document Classification Technologies', 'score': 0.9835, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/discriminative-model', 'display_name': 'Discriminative model', 'score': 0.84377134}], 'concepts': [{'id': 'https://openalex.org/C97931131', 'wikidata': 'https://www.wikidata.org/wiki/Q5282087', 'display_name': 'Discriminative model', 'level': 2, 'score': 0.84377134}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.69321257}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.47129428}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.41664785}], 'mesh': [], 'locations_count': 4, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1137/1.9781611974348.64', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc5287366', 'pdf_url': 'https://europepmc.org/articles/pmc5287366?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'acceptedVersion', 'is_accepted': True, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287366', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'acceptedVersion', 'is_accepted': True, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/28163983', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1137/1.9781611974348.64', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/10', 'score': 0.75, 'display_name': 'Reduced inequalities'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 33, 'referenced_works': ['https://openalex.org/W1596717185', 'https://openalex.org/W1623342295', 'https://openalex.org/W1678356000', 'https://openalex.org/W1937766607', 'https://openalex.org/W1970571562', 'https://openalex.org/W1973948212', 'https://openalex.org/W2020816856', 'https://openalex.org/W2046945713', 'https://openalex.org/W2052779929', 'https://openalex.org/W2094145178', 'https://openalex.org/W2101302040', 'https://openalex.org/W2104170135', 'https://openalex.org/W2104703176', 'https://openalex.org/W2107425660', 'https://openalex.org/W2108923196', 'https://openalex.org/W2111254498', 'https://openalex.org/W2116396873', 'https://openalex.org/W2117169652', 'https://openalex.org/W2118938540', 'https://openalex.org/W2119447781', 'https://openalex.org/W2135046866', 'https://openalex.org/W2149033360', 'https://openalex.org/W2150747245', 'https://openalex.org/W2154553070', 'https://openalex.org/W2154642793', 'https://openalex.org/W2161723275', 'https://openalex.org/W2163605009', 'https://openalex.org/W2167681385', 'https://openalex.org/W4239650470', 'https://openalex.org/W4251066569', 'https://openalex.org/W4285719527', 'https://openalex.org/W4299689471', 'https://openalex.org/W4399582985'], 'related_works': ['https://openalex.org/W4391375266', 'https://openalex.org/W4389116644', 'https://openalex.org/W3103844505', 'https://openalex.org/W2748952813', 'https://openalex.org/W2404514746', 'https://openalex.org/W2153315159', 'https://openalex.org/W2082783427', 'https://openalex.org/W2042327336', 'https://openalex.org/W2033914206', 'https://openalex.org/W1652783584'], 'abstract_inverted_index': {'Previous': [0, 241], 'chapter': [1, 3, 242, 244], 'Next': [2, 243], 'Full': [4], 'AccessProceedings': [5], 'Proceedings': [6], 'of': [7, 73, 119, 159, 202], 'the': [8, 57, 78, 117, 140, 157, 164], '2016': [9], 'SIAM': [10], 'International': [11], 'Conference': [12], 'on': [13, 87], 'Data': [14], 'Mining': [15], '(SDM)DPClass:': [16], 'An': [17], 'Effective': [18], 'but': [19], 'Concise': [20], 'Discriminative': [21], 'Patterns-Based': [22], 'Classification': [23], 'FrameworkJingbo': [24], 'Shang,': [25, 33], 'Wenzhu': [26, 34], 'Tong,': [27, 35], 'Jian': [28, 36], 'Peng,': [29, 37], 'and': [30, 38, 101, 106, 127, 205, 235], 'Jiawei': [31, 39], 'HanJingbo': [32], 'Hanpp.567': [40], '-': [41], '575Chapter': [42], 'DOI:https://doi.org/10.1137/1.9781611974348.64PDFBibTexSections': [43], 'ToolsAdd': [44], 'to': [45, 55, 68, 130, 145, 238], 'favoritesExport': [46], 'CitationTrack': [47], 'CitationsEmail': [48], 'SectionsAboutAbstract': [49], 'Pattern-based': [50], 'classification': [51, 89, 133, 182], 'was': [52], 'originally': [53], 'proposed': [54], 'improve': [56], 'accuracy': [58, 221], 'using': [59, 224], 'selected': [60], 'frequent': [61, 75], 'patterns,': [62, 204], 'where': [63], 'many': [64, 88], 'efforts': [65], 'were': [66], 'paid': [67], 'prune': [69], 'a': [70, 125, 172, 177], 'huge': [71], 'number': [72, 158, 201], 'non-discriminative': [74], 'patterns.': [76, 227], 'On': [77], 'other': [79], 'hand,': [80], 'tree-based': [81, 148], 'models': [82, 149], 'have': [83], 'shown': [84], 'strong': [85], 'abilities': [86], 'tasks': [90], 'since': [91], 'they': [92], 'can': [93], 'easily': [94], 'build': [95], 'high-order': [96], 'interactions': [97], 'between': [98], 'different': [99], 'features': [100, 108], 'also': [102], 'handle': [103], 'both': [104, 120], 'numerical': [105], 'categorical': [107], 'as': [109, 111, 187, 189], 'well': [110], 'high': [112], 'dimensional': [113], 'features.': [114], 'By': [115], 'taking': [116], 'advantage': [118], 'modeling': [121], 'methodologies,': [122], 'we': [123, 154], 'propose': [124], 'natural': [126], 'effective': [128, 166], 'way': [129], 'resolve': [131], 'pattern-based': [132, 181], 'by': [134, 162, 196, 222], 'adopting': [135], 'discriminative': [136, 160, 180, 203, 226], 'patterns': [137, 161], 'which': [138], 'are': [139], 'prefix': [141], 'paths': [142], 'from': [143], 'root': [144], 'nodes': [146], 'in': [147, 213], '(e.g.,': [150], 'random': [151], 'forest).': [152], 'Moreover,': [153], 'further': [155], 'compress': [156], 'selecting': [163], 'most': [165], 'pattern': [167], 'combinations': [168], 'that': [169], 'fit': [170], 'into': [171], 'generalized': [173], 'linear': [174], 'model.': [175], 'As': [176], 'result,': [178], 'our': [179, 214], 'framework': [183, 229], '(DPClass)': [184], 'could': [185, 217], 'perform': [186], 'good': [188], 'previous': [190], 'state-of-the-art': [191], 'algorithms,': [192], 'provide': [193], 'great': [194], 'interpretability': [195], 'utilizing': [197], 'only': [198, 223], 'very': [199, 233], 'limited': [200], 'predict': [206], 'new': [207], 'data': [208], 'extremely': [209], 'fast.': [210], 'More': [211], 'specifically,': [212], 'experiments,': [215], 'DPClass': [216], 'gain': [218], 'even': [219], 'better': [220], 'top-20': [225], 'The': [228], 'so': [230], 'generated': [231], 'is': [232], 'concise': [234], 'highly': [236], 'explanatory': [237], 'human': [239], 'experts.': [240], 'RelatedDetails': [245], 'Published:2016eISBN:978-1-61197-434-8': [246], 'https://doi.org/10.1137/1.9781611974348Book': [247], 'Series': [248], 'Name:ProceedingsBook': [249], 'Code:PRDT16Book': [250], 'Pages:1-867': [251]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2511037166', 'counts_by_year': [{'year': 2022, 'cited_by_count': 1}, {'year': 2021, 'cited_by_count': 2}, {'year': 2020, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 1}, {'year': 2018, 'cited_by_count': 1}, {'year': 2017, 'cited_by_count': 2}, {'year': 2016, 'cited_by_count': 1}], 'updated_date': '2024-12-08T20:51:23.908586', 'created_date': '2016-09-16'}