Title: High-speed railway rod-insulator detection using segment clustering and deformable part models
Abstract:Catenary system maintenance is an important task to the operation of a high-seed railway system. Currently, the inspection of damaged parts in the catenary system is performed manually, which is often...Catenary system maintenance is an important task to the operation of a high-seed railway system. Currently, the inspection of damaged parts in the catenary system is performed manually, which is often slow and unreliable. This paper proposes a method to detect and locate the rod-insulators in the image taken from the high-speed railway catenary system. Sub-images containing bar-shaped devices such as cantilever, strut, rod, and pole are first extracted from the image. Rod-insulator is then recognized and detected from these bar-shaped sub-images by using deformable part models and latent SVM. Experimental results show that the proposed method is able to locate rod-insulators accurately from the catenary image for the subsequent detect inspection process. The robustness of this method ensures its performance in different imaging conditions.Read More
Publication Year: 2016
Publication Date: 2016-08-17
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 28
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot