Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2404638125', 'doi': 'https://doi.org/10.1137/1.9781611972825.50', 'title': 'SOR: Scalable Orthogonal Regression for Non-Redundant Feature Selection and its Healthcare Applications', 'display_name': 'SOR: Scalable Orthogonal Regression for Non-Redundant Feature Selection and its Healthcare Applications', 'publication_year': 2012, 'publication_date': '2012-04-26', 'ids': {'openalex': 'https://openalex.org/W2404638125', 'doi': 'https://doi.org/10.1137/1.9781611972825.50', 'mag': '2404638125'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1137/1.9781611972825.50', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5101186016', 'display_name': 'Dijun Luo', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Dijun Luo', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100455871', 'display_name': 'Fei Wang', 'orcid': 'https://orcid.org/0000-0002-7594-663X'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Fei Wang', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5084279065', 'display_name': 'Jimeng Sun', 'orcid': 'https://orcid.org/0000-0003-1512-6426'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Jimeng Sun', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5009202015', 'display_name': 'Marianthi Markatou', 'orcid': 'https://orcid.org/0000-0002-1453-8229'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Marianthi Markatou', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5040300380', 'display_name': 'Jianying Hu', 'orcid': 'https://orcid.org/0000-0001-7753-886X'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Jianying Hu', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5057860811', 'display_name': 'Shahram Ebadollahi', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Shahram Ebadollahi', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 7.467, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 22, 'citation_normalized_percentile': {'value': 0.935192, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 90, 'max': 91}, 'biblio': {'volume': None, 'issue': None, 'first_page': '576', 'last_page': '587'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10885', 'display_name': 'Gene expression and cancer classification', 'score': 0.9983, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10885', 'display_name': 'Gene expression and cancer classification', 'score': 0.9983, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, {'id': 'https://openalex.org/T12535', 'display_name': 'Machine Learning and Data Classification', 'score': 0.9931, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12254', 'display_name': 'Machine Learning in Bioinformatics', 'score': 0.9916, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/orthogonality', 'display_name': 'Orthogonality', 'score': 0.62658083}, {'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.47382936}, {'id': 'https://openalex.org/keywords/complement', 'display_name': 'Complement', 'score': 0.42624906}], 'concepts': [{'id': 'https://openalex.org/C48044578', 'wikidata': 'https://www.wikidata.org/wiki/Q727490', 'display_name': 'Scalability', 'level': 2, 'score': 0.7381896}, {'id': 'https://openalex.org/C148483581', 'wikidata': 'https://www.wikidata.org/wiki/Q446488', 'display_name': 'Feature selection', 'level': 2, 'score': 0.7258384}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.6839328}, {'id': 'https://openalex.org/C152124472', 'wikidata': 'https://www.wikidata.org/wiki/Q1204361', 'display_name': 'Redundancy (engineering)', 'level': 2, 'score': 0.6645401}, {'id': 'https://openalex.org/C17137986', 'wikidata': 'https://www.wikidata.org/wiki/Q215067', 'display_name': 'Orthogonality', 'level': 2, 'score': 0.62658083}, {'id': 'https://openalex.org/C2777303404', 'wikidata': 'https://www.wikidata.org/wiki/Q759757', 'display_name': 'Convergence (economics)', 'level': 2, 'score': 0.4833681}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.47382936}, {'id': 'https://openalex.org/C124101348', 'wikidata': 'https://www.wikidata.org/wiki/Q172491', 'display_name': 'Data mining', 'level': 1, 'score': 0.4690509}, {'id': 'https://openalex.org/C81917197', 'wikidata': 'https://www.wikidata.org/wiki/Q628760', 'display_name': 'Selection (genetic algorithm)', 'level': 2, 'score': 0.4494127}, {'id': 'https://openalex.org/C112313634', 'wikidata': 'https://www.wikidata.org/wiki/Q7886648', 'display_name': 'Complement (music)', 'level': 5, 'score': 0.42624906}, {'id': 'https://openalex.org/C177264268', 'wikidata': 'https://www.wikidata.org/wiki/Q1514741', 'display_name': 'Set (abstract data type)', 'level': 2, 'score': 0.4220812}, {'id': 'https://openalex.org/C83546350', 'wikidata': 'https://www.wikidata.org/wiki/Q1139051', 'display_name': 'Regression', 'level': 2, 'score': 0.41106263}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.35034066}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.32767862}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.32528424}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.20248508}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C77088390', 'wikidata': 'https://www.wikidata.org/wiki/Q8513', 'display_name': 'Database', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C50522688', 'wikidata': 'https://www.wikidata.org/wiki/Q189833', 'display_name': 'Economic growth', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C55493867', 'wikidata': 'https://www.wikidata.org/wiki/Q7094', 'display_name': 'Biochemistry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C185592680', 'wikidata': 'https://www.wikidata.org/wiki/Q2329', 'display_name': 'Chemistry', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C188082640', 'wikidata': 'https://www.wikidata.org/wiki/Q1780899', 'display_name': 'Complementation', 'level': 4, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C104317684', 'wikidata': 'https://www.wikidata.org/wiki/Q7187', 'display_name': 'Gene', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C127716648', 'wikidata': 'https://www.wikidata.org/wiki/Q104053', 'display_name': 'Phenotype', 'level': 3, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1137/1.9781611972825.50', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'score': 0.45, 'id': 'https://metadata.un.org/sdg/17', 'display_name': 'Partnerships for the goals'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 25, 'referenced_works': ['https://openalex.org/W1570713908', 'https://openalex.org/W1592785605', 'https://openalex.org/W1608549042', 'https://openalex.org/W1661871015', 'https://openalex.org/W1727290854', 'https://openalex.org/W1871180460', 'https://openalex.org/W1986560547', 'https://openalex.org/W2017337590', 'https://openalex.org/W2063978378', 'https://openalex.org/W2109306224', 'https://openalex.org/W2110486110', 'https://openalex.org/W2116948717', 'https://openalex.org/W2124541940', 'https://openalex.org/W2124704116', 'https://openalex.org/W2135046866', 'https://openalex.org/W2143426320', 'https://openalex.org/W2153635508', 'https://openalex.org/W2154053567', 'https://openalex.org/W2154884142', 'https://openalex.org/W2160732687', 'https://openalex.org/W2325182507', 'https://openalex.org/W2435251607', 'https://openalex.org/W3120740533', 'https://openalex.org/W3141595720', 'https://openalex.org/W4285719527'], 'related_works': ['https://openalex.org/W4225360065', 'https://openalex.org/W4212852473', 'https://openalex.org/W3210877509', 'https://openalex.org/W3200179079', 'https://openalex.org/W3174196512', 'https://openalex.org/W3163334550', 'https://openalex.org/W2981423513', 'https://openalex.org/W2392236103', 'https://openalex.org/W2364822219', 'https://openalex.org/W2163070219'], 'abstract_inverted_index': {'Previous': [0, 325], 'chapter': [1, 3, 326, 328], 'Next': [2, 327], 'Full': [4], 'AccessProceedings': [5], 'Proceedings': [6], 'of': [7, 75, 107, 175, 181, 228, 257, 266, 280, 289, 300], 'the': [8, 98, 160, 173, 179, 205, 237, 258], '2012': [9], 'SIAM': [10], 'International': [11], 'Conference': [12], 'on': [13, 269], 'Data': [14], 'Mining': [15], '(SDM)SOR:': [16], 'Scalable': [17, 150], 'Orthogonal': [18, 151], 'Regression': [19, 152], 'for': [20, 70, 82, 285, 304], 'Non-Redundant': [21], 'Feature': [22, 85], 'Selection': [23], 'and': [24, 37, 49, 80, 139, 178, 197, 316, 320], 'its': [25], 'Healthcare': [26], 'ApplicationsDijun': [27], 'Luo,': [28, 40], 'Fei': [29, 41], 'Wang,': [30, 42], 'Jimeng': [31, 43], 'Sun,': [32, 44], 'Marianthi': [33, 45], 'Markatou,': [34, 46], 'Jianying': [35, 47], 'Hu,': [36, 48], 'Shahram': [38, 50], 'EbadollahiDijun': [39], 'Ebadollahipp.576': [51], '-': [52], '587Chapter': [53], 'DOI:https://doi.org/10.1137/1.9781611972825.50PDFBibTexSections': [54], 'ToolsAdd': [55], 'to': [56, 97, 102, 112, 124, 137, 172, 204, 212, 313], 'favoritesExport': [57], 'CitationTrack': [58], 'CitationsEmail': [59], 'SectionsAboutAbstract': [60], 'As': [61], 'more': [62], 'clinical': [63, 283, 323], 'information': [64], 'with': [65, 115, 133, 159, 170, 194, 243], 'increasing': [66], 'diversity': [67], 'become': [68], 'available': [69], 'analysis,': [71], 'a': [72, 88, 104, 264, 277, 281], 'large': [73], 'number': [74, 174, 180], 'features': [76, 114, 132, 177, 216, 230, 234], 'can': [77, 128, 223], 'be': [78], 'constructed': [79], 'leveraged': [81], 'predictive': [83, 117, 245, 318], 'modeling.': [84], 'selection': [86, 157, 261], 'is': [87, 186, 209], 'classic': [89], 'analytic': [90], 'component': [91], 'that': [92, 127, 235, 252], 'faces': [93], 'new': [94, 99], 'challenges': [95], 'due': [96], 'applications:': [100], 'How': [101, 111, 123, 136], 'handle': [103], 'diverse': [105], 'set': [106, 227, 240], 'high': [108, 116], 'dimensional': [109], 'features?': [110], 'select': [113, 129, 213], 'power,': [118], 'but': [119, 241], 'low': [120], 'redundant': [121, 215], 'information?': [122], 'design': [125], 'methods': [126, 262], 'globally': [130], 'optimal': [131], 'theoretical': [134, 195], 'guarantee?': [135], 'incorporate': [138], 'extend': [140], 'existing': [141, 226, 238], 'knowledge': [142], 'driven': [143], 'approach?': [144], 'In': [145], 'this': [146], 'paper,': [147], 'we': [148, 310], 'present': [149, 248], '(SOR),': [153], 'an': [154, 189, 225], 'optimization-based': [155], 'feature': [156, 239, 260], 'method': [158], 'following': [161], 'novelties:': [162], '1)': [163], 'Scalability:': [164], 'SOR': [165, 185, 208, 222, 253], 'achieves': [166], 'nearly': [167], 'linear': [168], 'scale-up': [169], 'respect': [171], 'input': [176], 'samples;': [182], '2)': [183], 'Optimality:': [184], 'formulated': [187], 'as': [188], 'alternative': [190], 'convex': [191], 'optimization': [192], 'problem': [193], 'convergence': [196], 'global': [198], 'optimality': [199], 'guarantee;': [200], '3)': [201], 'Low-redundancy:': [202], 'thanks': [203], 'orthogonality': [206], 'objective,': [207], 'designed': [210], 'specifically': [211], 'less': [214], 'without': [217], 'sacrificing': [218], 'quality;': [219], '4)': [220], 'Extendability:': [221], 'enhance': [224], 'preselected': [229], 'by': [231], 'adding': [232], 'additional': [233], 'complement': [236], 'still': [242], 'strong': [244], 'power.': [246], 'We': [247, 275], 'evaluation': [249], 'results': [250], 'showing': [251], 'consistently': [254], 'outperforms': [255], 'state': [256], 'art': [259], 'in': [263], 'range': [265], 'quality': [267], 'metrics': [268], 'several': [270], 'real': [271, 294], 'world': [272], 'data': [273, 299], 'sets.': [274], 'demonstrate': [276], 'case': [278], 'study': [279], 'large-scale': [282], 'application': [284], 'predicting': [286], 'early': [287], 'onset': [288], 'Heart': [290], 'Failure': [291], '(HF)': [292], 'using': [293], 'Electronic': [295], 'Health': [296], 'Records': [297], '(EHRs)': [298], 'over': [301, 305], '10K': [302], 'patients': [303], '7': [306], 'years.': [307], 'Leveraging': [308], 'SOR,': [309], 'are': [311], 'able': [312], 'construct': [314], 'accurate': [315], 'robust': [317], 'models': [319], 'derive': [321], 'potential': [322], 'insights.': [324], 'RelatedDetails': [329], 'Published:2012ISBN:978-1-61197-232-0eISBN:978-1-61197-282-5': [330], 'https://doi.org/10.1137/1.9781611972825Book': [331], 'Series': [332], 'Name:ProceedingsBook': [333], 'Code:PRDT12Book': [334], 'Pages:1-1150': [335]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2404638125', 'counts_by_year': [{'year': 2023, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 2}, {'year': 2018, 'cited_by_count': 2}, {'year': 2017, 'cited_by_count': 5}, {'year': 2015, 'cited_by_count': 5}, {'year': 2014, 'cited_by_count': 4}, {'year': 2013, 'cited_by_count': 2}, {'year': 2012, 'cited_by_count': 1}], 'updated_date': '2024-12-13T17:43:55.575777', 'created_date': '2016-06-24'}