Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2397971771', 'doi': None, 'title': 'Constructing Hierarchical Concepts via Analogical Generalization', 'display_name': 'Constructing Hierarchical Concepts via Analogical Generalization', 'publication_year': 2014, 'publication_date': '2014-01-01', 'ids': {'openalex': 'https://openalex.org/W2397971771', 'mag': '2397971771'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://escholarship.org/content/qt6hv175t4/qt6hv175t4.pdf?t=op9xp9', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S78735424', 'display_name': 'Cognitive Science', 'issn_l': '0364-0213', 'issn': ['0364-0213', '1551-6709'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': [], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5053537544', 'display_name': 'Chen Liang', 'orcid': 'https://orcid.org/0000-0002-0124-4133'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Chen Liang', 'raw_affiliation_strings': ['Northwestern University'], 'affiliations': [{'raw_affiliation_string': 'Northwestern University', 'institution_ids': []}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5063358572', 'display_name': 'Kenneth D. Forbus', 'orcid': 'https://orcid.org/0000-0003-2067-5227'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Kenneth D. Forbus', 'raw_affiliation_strings': ['Electrical Engineering and Computer Science'], 'affiliations': [{'raw_affiliation_string': 'Electrical Engineering and Computer Science', 'institution_ids': []}]}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': {'value': 3810, 'currency': 'USD', 'value_usd': 3810, 'provenance': 'doaj'}, 'apc_paid': None, 'fwci': 1.652, 'has_fulltext': False, 'cited_by_count': 6, 'citation_normalized_percentile': {'value': 0.778608, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 82, 'max': 83}, 'biblio': {'volume': '36', 'issue': '36', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11303', 'display_name': 'Bayesian Modeling and Causal Inference', 'score': 0.9943, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11303', 'display_name': 'Bayesian Modeling and Causal Inference', 'score': 0.9943, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10906', 'display_name': 'AI-based Problem Solving and Planning', 'score': 0.9922, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12805', 'display_name': 'Cognitive Science and Mapping', 'score': 0.9846, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.465308}, {'id': 'https://openalex.org/keywords/similarity', 'display_name': 'Similarity (geometry)', 'score': 0.4343549}, {'id': 'https://openalex.org/keywords/hierarchical-clustering', 'display_name': 'Hierarchical clustering', 'score': 0.4340555}, {'id': 'https://openalex.org/keywords/merge', 'display_name': 'Merge (version control)', 'score': 0.42245623}], 'concepts': [{'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.574346}, {'id': 'https://openalex.org/C177148314', 'wikidata': 'https://www.wikidata.org/wiki/Q170084', 'display_name': 'Generalization', 'level': 2, 'score': 0.5590291}, {'id': 'https://openalex.org/C31170391', 'wikidata': 'https://www.wikidata.org/wiki/Q188619', 'display_name': 'Hierarchy', 'level': 2, 'score': 0.5418315}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.514017}, {'id': 'https://openalex.org/C521332185', 'wikidata': 'https://www.wikidata.org/wiki/Q185816', 'display_name': 'Analogy', 'level': 2, 'score': 0.5117564}, {'id': 'https://openalex.org/C94124525', 'wikidata': 'https://www.wikidata.org/wiki/Q912550', 'display_name': 'Categorization', 'level': 2, 'score': 0.4871266}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.465308}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.44165066}, {'id': 'https://openalex.org/C103278499', 'wikidata': 'https://www.wikidata.org/wiki/Q254465', 'display_name': 'Similarity (geometry)', 'level': 3, 'score': 0.4343549}, {'id': 'https://openalex.org/C92835128', 'wikidata': 'https://www.wikidata.org/wiki/Q1277447', 'display_name': 'Hierarchical clustering', 'level': 3, 'score': 0.4340555}, {'id': 'https://openalex.org/C197129107', 'wikidata': 'https://www.wikidata.org/wiki/Q1921621', 'display_name': 'Merge (version control)', 'level': 2, 'score': 0.42245623}, {'id': 'https://openalex.org/C188147891', 'wikidata': 'https://www.wikidata.org/wiki/Q147638', 'display_name': 'Cognitive science', 'level': 1, 'score': 0.3965578}, {'id': 'https://openalex.org/C73555534', 'wikidata': 'https://www.wikidata.org/wiki/Q622825', 'display_name': 'Cluster analysis', 'level': 2, 'score': 0.3494436}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.34121603}, {'id': 'https://openalex.org/C15744967', 'wikidata': 'https://www.wikidata.org/wiki/Q9418', 'display_name': 'Psychology', 'level': 0, 'score': 0.23912287}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.19519049}, {'id': 'https://openalex.org/C23123220', 'wikidata': 'https://www.wikidata.org/wiki/Q816826', 'display_name': 'Information retrieval', 'level': 1, 'score': 0.13783723}, {'id': 'https://openalex.org/C111472728', 'wikidata': 'https://www.wikidata.org/wiki/Q9471', 'display_name': 'Epistemology', 'level': 1, 'score': 0.13113189}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C34447519', 'wikidata': 'https://www.wikidata.org/wiki/Q179522', 'display_name': 'Market economy', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://escholarship.org/content/qt6hv175t4/qt6hv175t4.pdf?t=op9xp9', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S78735424', 'display_name': 'Cognitive Science', 'issn_l': '0364-0213', 'issn': ['0364-0213', '1551-6709'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/4', 'score': 0.61, 'display_name': 'Quality education'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 30, 'referenced_works': ['https://openalex.org/W1532325895', 'https://openalex.org/W1585529040', 'https://openalex.org/W1600764354', 'https://openalex.org/W169938317', 'https://openalex.org/W1977970897', 'https://openalex.org/W1979104110', 'https://openalex.org/W2003240077', 'https://openalex.org/W2018234095', 'https://openalex.org/W2026161499', 'https://openalex.org/W2030644393', 'https://openalex.org/W2038842628', 'https://openalex.org/W2038912904', 'https://openalex.org/W2040685140', 'https://openalex.org/W2043343155', 'https://openalex.org/W2073308541', 'https://openalex.org/W2078294512', 'https://openalex.org/W2086618114', 'https://openalex.org/W2097266862', 'https://openalex.org/W2136445846', 'https://openalex.org/W2145454741', 'https://openalex.org/W2152444902', 'https://openalex.org/W2172837168', 'https://openalex.org/W2175498352', 'https://openalex.org/W2177085946', 'https://openalex.org/W2487770199', 'https://openalex.org/W2622032034', 'https://openalex.org/W2623015222', 'https://openalex.org/W3188864409', 'https://openalex.org/W53463721', 'https://openalex.org/W94972556'], 'related_works': ['https://openalex.org/W3170961486', 'https://openalex.org/W3105987802', 'https://openalex.org/W3098965860', 'https://openalex.org/W3011114341', 'https://openalex.org/W2963128460', 'https://openalex.org/W2613264999', 'https://openalex.org/W2526916212', 'https://openalex.org/W2340448811', 'https://openalex.org/W2157964439', 'https://openalex.org/W2156159857', 'https://openalex.org/W2125027602', 'https://openalex.org/W2116072085', 'https://openalex.org/W2102288994', 'https://openalex.org/W2078294512', 'https://openalex.org/W2026658502', 'https://openalex.org/W2026161499', 'https://openalex.org/W1967990924', 'https://openalex.org/W1934837536', 'https://openalex.org/W177807718', 'https://openalex.org/W1420240528'], 'abstract_inverted_index': {'Constructing': [0], 'Hierarchical': [1], 'Concepts': [2], 'via': [3, 335], 'Analogical': [4, 281, 412], 'Generalization': [5, 413], 'Chen': [6], 'Liang': [7], '([email protected])': [8], 'Kenneth': [9], 'D.': [10], 'Forbus': [11], '([email protected])': [12], 'Qualitative': [13], 'Reasoning': [14], 'Group,': [15], 'Northwestern': [16], 'University,': [17], '2133': [18], 'Sheridan': [19], 'Road': [20], 'Evanston,': [21], 'IL,': [22], '60208': [23], 'USA': [24], 'hierarchical': [25, 71, 88, 133, 211, 265, 305, 322], 'concepts.': [26], 'Next': [27], 'we': [28, 387, 392, 444], 'describe': [29, 107, 393], 'three': [30, 111], 'experiments,': [31], 'providing': [32], 'evidence': [33], 'that': [34, 39, 90, 115, 156, 180, 329, 386, 589], 'it': [35, 116, 301, 449, 591, 650], 'can': [36, 91, 258, 287, 338, 364], 'produce': [37], 'results': [38, 109, 125], 'are': [40, 141, 182, 388, 616, 731], 'compatible': [41], 'with': [42, 46, 64, 120, 291, 446, 481], 'human': [43, 58, 121, 242], 'judgments,': [44], 'and': [45, 66, 95, 123, 143, 166, 236, 352, 359, 383, 434, 463, 465, 495, 528, 562, 657, 706, 722, 736], 'a': [47, 52, 74, 146, 196, 260, 461, 474, 483, 505, 552, 557, 563, 567, 586, 602, 628, 651, 664, 674, 681, 718, 723], 'prior': [48], 'Bayesian': [49, 127, 248], 'simulation': [50], 'on': [51, 99, 110, 215, 276], 'data': [53, 59, 112, 122], 'set': [54, 475, 558, 719, 724], 'for': [55, 86, 397, 431, 440, 645, 671], 'which': [56, 238, 420, 487, 509, 555, 565, 683], 'no': [57], 'is': [60, 73, 145, 179, 239, 328, 407, 450, 510, 556, 566, 637, 684, 741], 'available.': [61], 'We': [62, 106, 374, 399, 498], 'close': [63], 'related': [65], 'future': [67], 'work.': [68], 'Abstract': [69], 'Learning': [70], 'concepts': [72, 140], 'central': [75, 147, 240], 'problem': [76], 'in': [77, 149, 232, 347, 421, 581, 627], 'cognitive': [78, 150], 'science.': [79, 151], 'This': [80, 308], 'paper': [81, 309], 'explores': [82, 310], 'the': [83, 100, 193, 319, 330, 340, 356, 384, 394, 410, 424, 451, 501, 516, 520, 523, 526, 577, 582, 606, 619, 646], 'Nearest-Merge': [84, 395], 'algorithm': [85], 'creating': [87], 'clusters': [89], 'handle': [92, 288, 368], 'both': [93, 734], 'feature-based': [94, 216, 348], 'relational': [96, 229, 289, 369, 607], 'information,': [97], 'building': [98, 389], 'SAGE': [101, 669], 'model': [102, 318, 406, 663], 'of': [103, 177, 210, 262, 321, 350, 355, 361, 380, 476, 492, 504, 522, 525, 559, 605, 609, 622, 624, 633, 640, 666, 720, 725, 733, 745], 'analogical': [104, 312, 432, 441], 'generalization.': [105], 'its': [108, 739], 'sets,': [113], 'showing': [114], 'provides': [117, 473, 488], 'reasonable': [118], 'fits': [119], 'comparable': [124], 'to': [126, 162, 191, 241, 268, 317, 367, 500, 512, 538, 546, 576, 592, 594, 618, 662, 686, 697], 'models.': [128], 'Keywords:': [129], 'Analogy,': [130], 'concept': [131], 'modeling,': [132], 'clustering': [134], 'learning,': [135], 'Background': [136], 'computational': [137], 'Introduction': [138], 'How': [139], 'formed': [142], 'organized': [144], 'question': [148], 'It': [152, 570], 'has': [153, 680], 'been': [154, 274, 660], 'argued': [155], 'people': [157, 189], 'group': [158], 'examples': [159], 'into': [160, 195], 'categories': [161, 178, 194], 'maximize': [163], 'within-category': [164], 'similarity': [165, 169, 332, 502], 'minimize': [167], 'between-category': [168], '(Mervis': [170], '&': [171, 201, 205, 220, 245, 255], 'Rosch,': [172], '1981).': [173], 'One': [174], 'important': [175], 'feature': [176, 297], 'they': [181, 271], 'not': [183, 273, 303, 690], 'isolated': [184], 'from': [185, 536, 544], 'each': [186, 625, 672], 'other.': [187], 'Instead,': [188], 'tend': [190], 'organize': [192], 'hierarchy': [197], 'or': [198, 468, 573, 689], 'taxonomy': [199], '(Collins': [200], 'Quillian,': [202], '1969;': [203], 'Murphy': [204], 'Lassaline,': [206], '1997).': [207], 'Most': [208], 'models': [209, 249, 349, 363, 385], 'category': [212], 'learning': [213], 'focus': [214], 'representations': [217, 226, 277, 290, 730], '(e.g.': [218], 'Medin': [219], 'Schaffer,': [221], '1978;': [222], 'Fischer': [223], '1987).': [224], 'Feature-based': [225], 'cannot': [227], 'capture': [228], 'thinking,': [230], 'involved': [231], 'explanation,': [233], 'causal': [234], 'reasoning,': [235], 'planning,': [237], 'cognition': [243], '(Gentner': [244], 'Kurtz,': [246], '2005).': [247], '(Kemp': [250], 'et': [251, 284, 417, 428, 437], 'al.': [252, 285, 418], '2006;': [253], 'Kemp': [254], 'Tenenbaum': [256], '2008)': [257], 'create': [259, 304], 'variety': [261, 665], 'structures,': [263, 266], 'including': [264], 'although': [267], 'our': [269], 'knowledge': [270], 'have': [272, 659], 'tested': [275], 'involving': [278], 'higher-order': [279, 292, 371], 'relations.': [280], 'generalization': [282, 313, 675, 678, 712, 715], '(Kuehne': [283], '2000)': [286], 'relations': [293], 'as': [294, 296, 343, 456, 507, 550], 'well': [295], 'representations,': [298, 460, 648], 'but': [299], 'currently': [300], 'does': [302], 'conceptual': [306, 323], 'structures.': [307], 'how': [311], 'might': [314, 702], 'be': [315, 365, 695, 708], 'extended': [316, 366], 'formation': [320], 'structure.': [324], 'The': [325, 598, 630, 728], 'basic': [326], 'insight': [327], 'numerical': [331], 'score': [333, 486, 503, 518, 644, 740], 'computed': [334], 'structure-': [336, 381], 'mapping': [337, 382, 472, 506], 'serve': [339], 'same': [341, 357], 'roles': [342], 'vector-based': [344], 'operations': [345], 'used': [346, 661, 685], 'similarity,': [351], 'hence': [353, 707], 'many': [354], 'ideas': [358], 'insights': [360], 'those': [362], '(including': [370], 'relational)': [372], 'representations.': [373], 'begin': [375], 'by': [376, 514, 519, 710], 'summarizing': [377], 'relevant': [378], 'aspects': [379], 'upon.': [390], 'Then': [391], 'algorithms': [396], 'constructing': [398], 'assume': [400], 'Gentner’s': [401], '(1983)': [402], 'structure-mapping': [403], 'theory.': [404], 'Our': [405], 'built': [408], 'upon': [409], 'Sequential': [411], 'Engine': [414, 426], '(SAGE;': [415], 'McLure': [416], '2010),': [419], 'turn': [422], 'uses': [423, 601], 'Structure-Mapping': [425], '(Falkenhainer': [427], 'al': [429, 438], '1989)': [430], 'comparison': [433], 'MAC/FAC': [435, 548, 658], '(Forbus': [436], '1995)': [439], 'retrieval.': [442], 'Thus': [443], 'start': [445], 'SME,': [447], 'since': [448], 'most': [452, 578], 'fundamental.': [453], 'SME': [454, 656], 'takes': [455, 549], 'input': [457, 551], 'two': [458, 634], 'structured': [459, 560, 568, 647], 'base': [462, 527, 537, 735], 'target,': [464, 539, 737], 'produces': [466], 'one': [467, 572], 'more': [469, 574], 'mappings.': [470], 'Each': [471, 714], 'correspondences': [477], '(i.e.': [478], 'what': [479], 'goes': [480], 'what),': [482], 'structural': [484, 642], 'evaluation': [485, 643], 'an': [489, 638, 691], 'overall': [490], 'estimate': [491, 639], 'match': [493], 'quality,': [494], 'candidate': [496, 533, 541], 'inferences.': [497], 'refer': [499], 'NSIM(base,target),': [508], 'normalized': [511], '[0,1]': [513], 'dividing': [515], 'raw': [517], 'mean': [521], 'self-scores': [524], 'target': [529, 545], '1': [530], '.': [531], 'Forward': [532], 'inferences': [534, 542], 'go': [535, 543], 'reverse': [540], 'base.': [547], 'case': [553, 580, 583, 596], 'library,': [554, 584], 'descriptions,': [561], 'probe,': [564], 'description.': [569, 629], 'returns': [571], 'approximations': [575], 'similar': [579], 'using': [585], 'two-stage': [587], 'process': [588], 'enables': [590], 'scale': [593], 'large': [595], 'libraries.': [597], 'first': [599], 'stage': [600], 'flattened': [603], 'version': [604], 'structure': [608], 'cases,': [610], 'called': [611], 'content': [612, 635], 'vectors,': [613], 'whose': [614], 'dimensions': [615], 'proportional': [617], 'weighted': [620], 'number': [621], 'occurrences': [623], 'predicate': [626], 'dot': [631], 'product': [632], 'vectors': [636], 'SME’s': [641], 'making': [649], 'useful': [652], 'coarse': [653], 'filter.': [654], 'Both': [655], 'psychological': [667], 'phenomena.': [668], 'maintains,': [670], 'concept,': [673], 'context.': [676], 'A': [677], 'context': [679, 716], 'trigger,': [682], 'test': [687], 'whether': [688], 'incoming': [692, 700], 'example': [693, 701], 'should': [694], 'added': [696], 'it.': [698], '(An': [699], 'satisfy': [703], 'multiple': [704], 'triggers,': [705], 'processed': [709], 'several': [711], 'contexts.)': [713], 'maintains': [717], 'generalizations': [721], 'unassimilated': [726], 'examples.': [727], 'mapped': [729], 'subsets': [732], 'so': [738], 'lower': [742], 'than': [743], 'either': [744], 'their': [746], 'self-scores.': [747]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2397971771', 'counts_by_year': [{'year': 2021, 'cited_by_count': 1}, {'year': 2017, 'cited_by_count': 2}, {'year': 2016, 'cited_by_count': 1}, {'year': 2015, 'cited_by_count': 2}], 'updated_date': '2024-12-14T06:13:47.785734', 'created_date': '2016-06-24'}