Title: Comparison of Kalman filters formulated as the statistics of the Normal-inverse-Wishart distribution
Abstract:A novel growing-window recursive procedure for Kalman filter comparison is proposed based on the Bayesian inference principle. This procedure is capable of processing unlimited growth of the uncertain...A novel growing-window recursive procedure for Kalman filter comparison is proposed based on the Bayesian inference principle. This procedure is capable of processing unlimited growth of the uncertainty of the initial parameter settings, which is a characteristic of Kalman type algorithms. The present paper applies the suggested procedure to assess the degree of support for the state point estimates generated by Kalman filters differing in their system model descriptions. The algebraic form of the comparison algorithm covers the situation when the covariance of the measurement noise is known as well as is unknown and the normalized covariance matrix of the process noise is always available. In this respect, the Kalman filter is formulated here as recursive learning of the sufficient statistics of the Normal and Normal-inverse-Wishart distributions.Read More
Publication Year: 2015
Publication Date: 2015-12-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 8
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot