Title: Continuity of the time and isoperimetric constants in supercritical percolation
Abstract:We consider two different objects on super-critical Bernoulli percolation on $\mathbb{Z}^d$ : the time constant for i.i.d. first-passage percolation (for $d\geq 2$) and the isoperimetric constant (for...We consider two different objects on super-critical Bernoulli percolation on $\mathbb{Z}^d$ : the time constant for i.i.d. first-passage percolation (for $d\geq 2$) and the isoperimetric constant (for $d=2$). We prove that both objects are continuous with respect to the law of the environment. More precisely we prove that the isoperimetric constant of supercritical percolation in $\mathbb{Z}^2$ is continuous in the percolation parameter. As a corollary we prove that normalized sets achieving the isoperimetric constant are continuous with respect to the Hausdroff metric. Concerning first-passage percolation, equivalently we consider the model of i.i.d. first-passage percolation on $\mathbb{Z}^d$ with possibly infinite passage times: we associate with each edge $e$ of the graph a passage time $t(e)$ taking values in $[0,+\infty]$, such that $\mathbf{P}[t(e) p_c(d)$. We prove the continuity of the time constant with respect to the law of the passage times. This extends the continuity property previously proved by Cox and Kesten for first passage percolation with finite passage times.Read More
Publication Year: 2015
Publication Date: 2015-12-02
Language: en
Type: preprint
Access and Citation
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot