Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2169904627', 'doi': 'https://doi.org/10.48550/arxiv.0905.4482', 'title': 'Topics in Compressed Sensing', 'display_name': 'Topics in Compressed Sensing', 'publication_year': 2009, 'publication_date': '2009-01-01', 'ids': {'openalex': 'https://openalex.org/W2169904627', 'doi': 'https://doi.org/10.48550/arxiv.0905.4482', 'mag': '2169904627'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/0905.4482', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'posted-content', 'indexed_in': ['datacite'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/abs/0905.4482', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5024153474', 'display_name': 'Deanna Needell', 'orcid': 'https://orcid.org/0000-0002-8058-8638'}, 'institutions': [{'id': 'https://openalex.org/I872248612', 'display_name': 'Claremont Colleges', 'ror': 'https://ror.org/03xaz7s88', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I872248612']}], 'countries': ['US'], 'is_corresponding': True, 'raw_author_name': 'Deanna Needell', 'raw_affiliation_strings': ['Claremont Colleges;'], 'affiliations': [{'raw_affiliation_string': 'Claremont Colleges;', 'institution_ids': ['https://openalex.org/I872248612']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5024153474'], 'corresponding_institution_ids': ['https://openalex.org/I872248612'], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': False, 'cited_by_count': 66, 'citation_normalized_percentile': {'value': 0.972323, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 95, 'max': 96}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10522', 'display_name': 'Medical Imaging Techniques and Applications', 'score': 0.9966, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T10378', 'display_name': 'Advanced MRI Techniques and Applications', 'score': 0.996, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/basis-pursuit', 'display_name': 'Basis pursuit', 'score': 0.8426799}, {'id': 'https://openalex.org/keywords/basis', 'display_name': 'Basis (linear algebra)', 'score': 0.5547442}, {'id': 'https://openalex.org/keywords/signal-reconstruction', 'display_name': 'Signal reconstruction', 'score': 0.52561563}, {'id': 'https://openalex.org/keywords/signal', 'display_name': 'SIGNAL (programming language)', 'score': 0.41817337}], 'concepts': [{'id': 'https://openalex.org/C156872377', 'wikidata': 'https://www.wikidata.org/wiki/Q6786281', 'display_name': 'Matching pursuit', 'level': 3, 'score': 0.93174446}, {'id': 'https://openalex.org/C124851039', 'wikidata': 'https://www.wikidata.org/wiki/Q2665459', 'display_name': 'Compressed sensing', 'level': 2, 'score': 0.90139616}, {'id': 'https://openalex.org/C99217422', 'wikidata': 'https://www.wikidata.org/wiki/Q4867576', 'display_name': 'Basis pursuit', 'level': 4, 'score': 0.8426799}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.6539371}, {'id': 'https://openalex.org/C51823790', 'wikidata': 'https://www.wikidata.org/wiki/Q504353', 'display_name': 'Greedy algorithm', 'level': 2, 'score': 0.6455427}, {'id': 'https://openalex.org/C33676613', 'wikidata': 'https://www.wikidata.org/wiki/Q13415176', 'display_name': 'Dimension (graph theory)', 'level': 2, 'score': 0.59489787}, {'id': 'https://openalex.org/C12426560', 'wikidata': 'https://www.wikidata.org/wiki/Q189569', 'display_name': 'Basis (linear algebra)', 'level': 2, 'score': 0.5547442}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.53611726}, {'id': 'https://openalex.org/C70958404', 'wikidata': 'https://www.wikidata.org/wiki/Q7512728', 'display_name': 'Signal reconstruction', 'level': 4, 'score': 0.52561563}, {'id': 'https://openalex.org/C34388435', 'wikidata': 'https://www.wikidata.org/wiki/Q2267362', 'display_name': 'Bounded function', 'level': 2, 'score': 0.50864804}, {'id': 'https://openalex.org/C41045048', 'wikidata': 'https://www.wikidata.org/wiki/Q202843', 'display_name': 'Linear programming', 'level': 2, 'score': 0.4841374}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.45506358}, {'id': 'https://openalex.org/C140779682', 'wikidata': 'https://www.wikidata.org/wiki/Q210868', 'display_name': 'Sampling (signal processing)', 'level': 3, 'score': 0.42587453}, {'id': 'https://openalex.org/C2779843651', 'wikidata': 'https://www.wikidata.org/wiki/Q7390335', 'display_name': 'SIGNAL (programming language)', 'level': 2, 'score': 0.41817337}, {'id': 'https://openalex.org/C104267543', 'wikidata': 'https://www.wikidata.org/wiki/Q208163', 'display_name': 'Signal processing', 'level': 3, 'score': 0.2939703}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.24659345}, {'id': 'https://openalex.org/C554190296', 'wikidata': 'https://www.wikidata.org/wiki/Q47528', 'display_name': 'Radar', 'level': 2, 'score': 0.23274636}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.09283951}, {'id': 'https://openalex.org/C76155785', 'wikidata': 'https://www.wikidata.org/wiki/Q418', 'display_name': 'Telecommunications', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C106131492', 'wikidata': 'https://www.wikidata.org/wiki/Q3072260', 'display_name': 'Filter (signal processing)', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C202444582', 'wikidata': 'https://www.wikidata.org/wiki/Q837863', 'display_name': 'Pure mathematics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/0905.4482', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://api.datacite.org/dois/10.48550/arxiv.0905.4482', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4393179698', 'display_name': 'DataCite API', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I4210145204', 'host_organization_name': 'DataCite', 'host_organization_lineage': ['https://openalex.org/I4210145204'], 'host_organization_lineage_names': ['DataCite'], 'type': 'metadata'}, 'license': None, 'license_id': None, 'version': None}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/0905.4482', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 54, 'referenced_works': ['https://openalex.org/W1527917680', 'https://openalex.org/W1547069553', 'https://openalex.org/W1632601927', 'https://openalex.org/W1635427980', 'https://openalex.org/W1965972569', 'https://openalex.org/W1974466705', 'https://openalex.org/W1975680434', 'https://openalex.org/W1984305442', 'https://openalex.org/W1998368223', 'https://openalex.org/W2000302095', 'https://openalex.org/W2006506233', 'https://openalex.org/W2010315317', 'https://openalex.org/W2012365979', 'https://openalex.org/W2012961725', 'https://openalex.org/W2014513111', 'https://openalex.org/W2015418199', 'https://openalex.org/W2020004242', 'https://openalex.org/W2020390700', 'https://openalex.org/W2038517753', 'https://openalex.org/W2052610157', 'https://openalex.org/W2055064119', 'https://openalex.org/W2058583833', 'https://openalex.org/W2061813658', 'https://openalex.org/W2065919982', 'https://openalex.org/W2076866563', 'https://openalex.org/W2091256848', 'https://openalex.org/W2099100030', 'https://openalex.org/W2101675075', 'https://openalex.org/W2107086875', 'https://openalex.org/W2107861471', 'https://openalex.org/W2108034412', 'https://openalex.org/W2109449402', 'https://openalex.org/W2111067490', 'https://openalex.org/W2115706991', 'https://openalex.org/W2122548617', 'https://openalex.org/W2125455772', 'https://openalex.org/W2127271355', 'https://openalex.org/W2129131372', 'https://openalex.org/W2130199634', 'https://openalex.org/W2135294617', 'https://openalex.org/W2139105070', 'https://openalex.org/W2140122025', 'https://openalex.org/W2151693816', 'https://openalex.org/W2154332973', 'https://openalex.org/W2164452299', 'https://openalex.org/W2169472615', 'https://openalex.org/W2289917018', 'https://openalex.org/W2296616510', 'https://openalex.org/W2798766386', 'https://openalex.org/W2949379925', 'https://openalex.org/W2954811775', 'https://openalex.org/W2987042746', 'https://openalex.org/W3126008680', 'https://openalex.org/W3145128584'], 'related_works': ['https://openalex.org/W2946877649', 'https://openalex.org/W2465351041', 'https://openalex.org/W2436826437', 'https://openalex.org/W2388133936', 'https://openalex.org/W2381127329', 'https://openalex.org/W2378166785', 'https://openalex.org/W2340242818', 'https://openalex.org/W2241396314', 'https://openalex.org/W2169904627', 'https://openalex.org/W2103001330'], 'abstract_inverted_index': {'Compressed': [0], 'sensing': [1], 'has': [2], 'a': [3, 18, 22, 36, 109, 208], 'wide': [4], 'range': [5], 'of': [6, 38, 63, 76, 149, 207], 'applications': [7], 'that': [8, 30, 53, 65, 93, 145], 'include': [9], 'error': [10], 'correction,': [11], 'imaging,': [12], 'radar': [13], 'and': [14, 33, 98, 122, 185, 224], 'many': [15], 'more.': [16], 'Given': [17], 'sparse': [19, 91], 'signal': [20, 31, 151], 'in': [21, 48, 60, 227], 'high': [23], 'dimensional': [24], 'space,': [25], 'one': [26], 'wishes': [27], 'to': [28, 90, 113, 169, 199], 'reconstruct': [29], 'accurately': [32], 'efficiently': [34], 'from': [35], 'number': [37], 'linear': [39, 77, 110], 'measurements': [40, 78], 'much': [41, 157], 'less': [42], 'than': [43, 159], 'its': [44], 'actual': [45], 'dimension.': [46], 'Although': [47], 'theory': [49], 'it': [50], 'is': [51, 55, 225], 'clear': [52], 'this': [54], 'possible,': [56], 'the': [57, 61, 67, 81, 115, 147, 150, 171, 177, 187, 205], 'difficulty': [58], 'lies': [59], 'construction': [62], 'algorithms': [64], 'perform': [66], 'recovery': [68, 92], 'efficiently,': [69], 'as': [70, 72, 105, 202, 204], 'well': [71, 203], 'determining': [73], 'which': [74], 'kind': [75], 'allow': [79], 'for': [80], 'reconstruction.': [82], 'There': [83], 'have': [84, 134], 'been': [85, 167], 'two': [86, 178], 'distinct': [87], 'major': [88], 'approaches': [89, 179], 'each': [94], 'present': [95], 'different': [96], 'benefits': [97], 'shortcomings.': [99], 'The': [100, 139], 'first,': [101], 'L1-minimization': [102], 'methods': [103, 130, 144, 154], 'such': [104], 'Basis': [106, 160, 200], 'Pursuit,': [107, 161], 'use': [108], 'optimization': [111], 'problem': [112], 'recover': [114], 'signal.': [116], 'This': [117, 174], 'method': [118], 'provides': [119, 196], 'strong': [120, 135], 'guarantees': [121, 198], 'stability,': [123], 'but': [124, 162], 'relies': [125], 'on': [126], 'Linear': [127], 'Programming,': [128], 'whose': [129], 'do': [131], 'not': [132, 166], 'yet': [133], 'polynomially': [136], 'bounded': [137], 'runtimes.': [138], 'second': [140], 'approach': [141], 'uses': [142], 'greedy': [143, 188, 209], 'compute': [146], 'support': [148], 'iteratively.': [152], 'These': [153], 'are': [155], 'usually': [156], 'faster': [158], 'until': [163], 'recently': [164], 'had': [165], 'able': [168], 'provide': [170], 'same': [172], 'guarantees.': [173], 'gap': [175], 'between': [176], 'was': [180], 'bridged': [181], 'when': [182], 'we': [183], 'developed': [184], 'analyzed': [186], 'algorithm': [189, 214], 'Regularized': [190], 'Orthogonal': [191], 'Matching': [192, 217], 'Pursuit': [193, 201, 218], '(ROMP).': [194], 'ROMP': [195], 'similar': [197], 'speed': [206], 'algorithm.': [210], 'Our': [211], 'more': [212], 'recent': [213], 'Compressive': [215], 'Sampling': [216], '(CoSaMP)': [219], 'improves': [220], 'upon': [221], 'these': [222], 'guarantees,': [223], 'optimal': [226], 'every': [228], 'important': [229], 'aspect.': [230]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2169904627', 'counts_by_year': [{'year': 2023, 'cited_by_count': 3}, {'year': 2021, 'cited_by_count': 2}, {'year': 2020, 'cited_by_count': 1}, {'year': 2018, 'cited_by_count': 7}, {'year': 2017, 'cited_by_count': 4}, {'year': 2016, 'cited_by_count': 7}, {'year': 2015, 'cited_by_count': 5}, {'year': 2014, 'cited_by_count': 8}, {'year': 2013, 'cited_by_count': 8}, {'year': 2012, 'cited_by_count': 11}], 'updated_date': '2024-12-16T19:23:52.618023', 'created_date': '2016-06-24'}