Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2162746294', 'doi': 'https://doi.org/10.1109/tnn.2008.2006331', 'title': 'Efficient Object Recognition Using Boundary Representation and Wavelet Neural Network', 'display_name': 'Efficient Object Recognition Using Boundary Representation and Wavelet Neural Network', 'publication_year': 2008, 'publication_date': '2008-12-01', 'ids': {'openalex': 'https://openalex.org/W2162746294', 'doi': 'https://doi.org/10.1109/tnn.2008.2006331', 'mag': '2162746294', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/19054736'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tnn.2008.2006331', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S42080949', 'display_name': 'IEEE Transactions on Neural Networks', 'issn_l': '1045-9227', 'issn': ['1045-9227', '1941-0093'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5083939413', 'display_name': 'Hong Pan', 'orcid': 'https://orcid.org/0000-0002-0539-7997'}, 'institutions': [{'id': 'https://openalex.org/I76569877', 'display_name': 'Southeast University', 'ror': 'https://ror.org/04ct4d772', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I76569877']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Hong Pan', 'raw_affiliation_strings': ['School of Automation, South-East University, Nanjing, China'], 'affiliations': [{'raw_affiliation_string': 'School of Automation, South-East University, Nanjing, China', 'institution_ids': ['https://openalex.org/I76569877']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5003165832', 'display_name': 'Xia Liang-zheng', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I76569877', 'display_name': 'Southeast University', 'ror': 'https://ror.org/04ct4d772', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I76569877']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Liang-Zheng Xia', 'raw_affiliation_strings': ['School of Automation, South-East University, Nanjing, China'], 'affiliations': [{'raw_affiliation_string': 'School of Automation, South-East University, Nanjing, China', 'institution_ids': ['https://openalex.org/I76569877']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 1.849, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 56, 'citation_normalized_percentile': {'value': 0.938548, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 94, 'max': 95}, 'biblio': {'volume': '19', 'issue': '12', 'first_page': '2132', 'last_page': '2149'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10824', 'display_name': 'Image Retrieval and Classification Techniques', 'score': 0.9986, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10824', 'display_name': 'Image Retrieval and Classification Techniques', 'score': 0.9986, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T14339', 'display_name': 'Image Processing and 3D Reconstruction', 'score': 0.9954, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12549', 'display_name': 'Image and Object Detection Techniques', 'score': 0.9938, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/discriminative-model', 'display_name': 'Discriminative model', 'score': 0.4514576}, {'id': 'https://openalex.org/keywords/cascade-algorithm', 'display_name': 'Cascade algorithm', 'score': 0.41417208}], 'concepts': [{'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.7210699}, {'id': 'https://openalex.org/C47432892', 'wikidata': 'https://www.wikidata.org/wiki/Q831390', 'display_name': 'Wavelet', 'level': 2, 'score': 0.71023434}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.69681907}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.5792068}, {'id': 'https://openalex.org/C196216189', 'wikidata': 'https://www.wikidata.org/wiki/Q2867', 'display_name': 'Wavelet transform', 'level': 3, 'score': 0.5576679}, {'id': 'https://openalex.org/C155777637', 'wikidata': 'https://www.wikidata.org/wiki/Q2736187', 'display_name': 'Wavelet packet decomposition', 'level': 4, 'score': 0.4793297}, {'id': 'https://openalex.org/C97931131', 'wikidata': 'https://www.wikidata.org/wiki/Q5282087', 'display_name': 'Discriminative model', 'level': 2, 'score': 0.4514576}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.44687727}, {'id': 'https://openalex.org/C88829872', 'wikidata': 'https://www.wikidata.org/wiki/Q5048176', 'display_name': 'Cascade algorithm', 'level': 5, 'score': 0.41417208}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.3333061}], 'mesh': [{'descriptor_ui': 'D000465', 'descriptor_name': 'Algorithms', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D007090', 'descriptor_name': 'Image Interpretation, Computer-Assisted', 'qualifier_ui': 'Q000379', 'qualifier_name': 'methods', 'is_major_topic': True}, {'descriptor_ui': 'D008962', 'descriptor_name': 'Models, Theoretical', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D016571', 'descriptor_name': 'Neural Networks, Computer', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D010363', 'descriptor_name': 'Pattern Recognition, Automated', 'qualifier_ui': 'Q000379', 'qualifier_name': 'methods', 'is_major_topic': True}, {'descriptor_ui': 'D003198', 'descriptor_name': 'Computer Simulation', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D007090', 'descriptor_name': 'Image Interpretation, Computer-Assisted', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D010363', 'descriptor_name': 'Pattern Recognition, Automated', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D012815', 'descriptor_name': 'Signal Processing, Computer-Assisted', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tnn.2008.2006331', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S42080949', 'display_name': 'IEEE Transactions on Neural Networks', 'issn_l': '1045-9227', 'issn': ['1045-9227', '1941-0093'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/19054736', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'display_name': 'Reduced inequalities', 'id': 'https://metadata.un.org/sdg/10', 'score': 0.66}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 56, 'referenced_works': ['https://openalex.org/W109390732', 'https://openalex.org/W1504736116', 'https://openalex.org/W1925362108', 'https://openalex.org/W1963812344', 'https://openalex.org/W1966236750', 'https://openalex.org/W1970876195', 'https://openalex.org/W1973040917', 'https://openalex.org/W1988116054', 'https://openalex.org/W1998628605', 'https://openalex.org/W2002126584', 'https://openalex.org/W2004217976', 'https://openalex.org/W2018783332', 'https://openalex.org/W2019819286', 'https://openalex.org/W2025616541', 'https://openalex.org/W2034396562', 'https://openalex.org/W2039845656', 'https://openalex.org/W2046650367', 'https://openalex.org/W2052277674', 'https://openalex.org/W2053695442', 'https://openalex.org/W2057175746', 'https://openalex.org/W2072738093', 'https://openalex.org/W2076567023', 'https://openalex.org/W2077776908', 'https://openalex.org/W2080495424', 'https://openalex.org/W2082346459', 'https://openalex.org/W2085806937', 'https://openalex.org/W2098386213', 'https://openalex.org/W2100689562', 'https://openalex.org/W2103052024', 'https://openalex.org/W2105542305', 'https://openalex.org/W2105693855', 'https://openalex.org/W2108556791', 'https://openalex.org/W2112547574', 'https://openalex.org/W2115755118', 'https://openalex.org/W2115790233', 'https://openalex.org/W2117336628', 'https://openalex.org/W2119821739', 'https://openalex.org/W2122827492', 'https://openalex.org/W2122986041', 'https://openalex.org/W2137063785', 'https://openalex.org/W2145023731', 'https://openalex.org/W2147789761', 'https://openalex.org/W2152328854', 'https://openalex.org/W2154332114', 'https://openalex.org/W2156798906', 'https://openalex.org/W2156909104', 'https://openalex.org/W2157007857', 'https://openalex.org/W2157164240', 'https://openalex.org/W2159498975', 'https://openalex.org/W2171357473', 'https://openalex.org/W2171506994', 'https://openalex.org/W2293747114', 'https://openalex.org/W2766736793', 'https://openalex.org/W3141443221', 'https://openalex.org/W4214540058', 'https://openalex.org/W4239510810'], 'related_works': ['https://openalex.org/W2390482320', 'https://openalex.org/W2384638757', 'https://openalex.org/W2153999384', 'https://openalex.org/W2148116311', 'https://openalex.org/W2123869488', 'https://openalex.org/W2112061901', 'https://openalex.org/W2103507103', 'https://openalex.org/W1997711983', 'https://openalex.org/W1592123422', 'https://openalex.org/W1502966458'], 'abstract_inverted_index': {'<para': [0], 'xmlns:mml="http://www.w3.org/1998/Math/MathML"': [1], 'xmlns:xlink="http://www.w3.org/1999/xlink">': [2], 'Wavelet': [3], 'neural': [4, 21, 48, 57], 'networks': [5], 'combine': [6], 'the': [7, 13, 20, 29, 46, 62, 65, 72, 76, 89, 92, 104, 108, 113, 118, 123, 127, 138, 151, 162, 175, 180, 192, 204, 223], 'functions': [8, 155], 'of': [9, 17, 31, 64, 88, 103, 112, 122, 160], 'time–frequency': [10, 86], 'localization': [11], 'from': [12, 19], 'wavelet': [14, 47, 56, 101, 124, 154, 197], 'transform': [15], 'and': [16, 45, 69, 79, 213, 231, 238], 'self-studying': [18], 'network,': [22], 'which': [23, 182], 'make': [24], 'them': [25], 'particularly': [26], 'suitable': [27, 185], 'for': [28, 186], 'classification': [30, 74], 'complex': [32], 'patterns.': [33], 'In': [34], 'this': [35], 'paper,': [36], 'an': [37, 81], 'efficient': [38], 'object': [39, 66, 73, 93], 'recognition': [40, 188], 'method': [41, 53], 'using': [42, 209], 'boundary': [43, 94], 'representation': [44, 68], 'network': [49, 58], 'is': [50, 165], 'proposed.': [51], 'The': [52, 84], 'employs': [54], 'a': [55, 99, 157, 169], '(WNN)': [59], 'to': [60, 70, 133, 146], 'characterize': [61], 'singularities': [63, 90, 114], 'curvature': [67, 105], 'perform': [71], 'at': [75, 156, 174], 'same': [77], 'time': [78], 'in': [80, 126], 'automatic': [82], 'way.': [83], 'local': [85], 'attributes': [87], 'on': [91, 222], 'are': [95, 115, 131, 172], 'detected': [96], 'by': [97, 149, 196], 'making': [98], 'preliminary': [100], 'analysis': [102], 'representation.': [106], 'Then,': [107], 'discriminative': [109], 'scale–translation': [110, 120, 177, 202], 'features': [111, 148], 'stored': [116], 'as': [117, 144], 'initial': [119], 'parameters': [121, 130], 'nodes': [125], 'WNN.': [128], 'These': [129], 'trained': [132], 'their': [134], 'optimum': [135, 176], 'status': [136], 'during': [137, 179], 'learning': [139], 'stage.': [140], 'With': [141], 'our': [142, 227], 'approach,': [143], 'opposed': [145], 'matching': [147], 'convolving': [150], 'signal': [152], 'with': [153, 191, 200], 'large': [158], 'number': [159], 'scales,': [161], 'computational': [163], 'burden': [164], 'significantly': [166], 'reduced.': [167], 'Only': [168], 'few': [170], 'convolutions': [171], 'performed': [173], 'grids': [178], 'classification,': [181], 'makes': [183], 'it': [184], 'real-time': [187], 'tasks.': [189], 'Compared': [190], 'artificial-neural-network-based': [193], 'approaches': [194], 'preceded': [195], 'filter': [198], 'banks': [199], 'fixed': [201], 'parameters,': [203], 'support': [205], 'vector': [206], 'machine': [207], '(SVM)': [208], 'traditional': [210], 'Fourier': [211], 'descriptors': [212], '<formula': [214], 'formulatype="inline"><tex': [215, 218], 'Notation="TeX">$K$</tex></formula>-nearest-neighbor': [216], '(<formula': [217], 'Notation="TeX">$K$</tex></formula>-NN)': [219], 'classifier': [220], 'based': [221], 'state-of-the-art': [224], 'shape': [225], 'descriptors,': [226], 'scheme': [228], 'demonstrates': [229], 'superior': [230], 'stable': [232], 'discrimination': [233], 'performance': [234], 'under': [235], 'various': [236], 'noisy': [237], 'affine': [239], 'conditions.': [240], '</para>': [241]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2162746294', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 2}, {'year': 2021, 'cited_by_count': 3}, {'year': 2020, 'cited_by_count': 5}, {'year': 2019, 'cited_by_count': 2}, {'year': 2018, 'cited_by_count': 3}, {'year': 2017, 'cited_by_count': 4}, {'year': 2016, 'cited_by_count': 4}, {'year': 2015, 'cited_by_count': 3}, {'year': 2014, 'cited_by_count': 13}, {'year': 2013, 'cited_by_count': 6}, {'year': 2012, 'cited_by_count': 1}], 'updated_date': '2025-01-11T17:52:00.192040', 'created_date': '2016-06-24'}