Title: CONFINING TIME-LIKE GLUON AND CONFINED SPATIAL GLUONS IN COULOMB GAUGE QCD
Abstract:We investigate the Gribov-Zwanziger scenario in Coulomb gauge QCD using a SU(3) quenched lattice gauge simulation. The ghost propagator diverges in the infrared limit stronger than the free ghost prop...We investigate the Gribov-Zwanziger scenario in Coulomb gauge QCD using a SU(3) quenched lattice gauge simulation. The ghost propagator diverges in the infrared limit stronger than the free ghost propagator, and the ghost degree of freedom plays a central role in the confinement mechanism in the Coulomb gauge. The infrared divergent ghost dressing function results in the confining color-Coulomb instantaneous interaction. The equal-time transverse gluon propagator is suppressed in the infrared region. Therefore, in the Coulomb gauge, the instantaneous interaction mediated by time-like gluons is responsible for the confining force, and the would-be physical gluons are confined in hadrons.Read More
Publication Year: 2008
Publication Date: 2008-09-30
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 4
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot