Title: Study on Piecewise Smooth Signal Reconstruction Algorithms based on Compressed Sensing
Abstract:In this paper, the unknown piecewise smooth signal was chosen as tested signal. After random matrix were chosen as measure matrix, we design the CS (Compressed Sensing) model for the unknown piecewise...In this paper, the unknown piecewise smooth signal was chosen as tested signal. After random matrix were chosen as measure matrix, we design the CS (Compressed Sensing) model for the unknown piecewise smooth signal. The signal was reconstructed using the OMP (Orthogonal Matching Pursuit) algorithm. The linear combination wavelet bases were proposed by the authors and were chosen as the sparse base in the CS model. The simulation results show that CS model by this paper can acquire the better approximation of the original signal. Streszczenie. W artykule opisano metode rekonstrukcji sygnalu odcinkowo-gladkiego, z wykorzystaniem algorytmu OMP. Dane uzyskane z modelu probkowania oszczednego (ang. Compressed Sensing) sygnalu, umieszczono w wygenerowanej losowo macierzy pomiarowej. W algorytmie probkowania wykorzystano falkowe kombinacje liniowe. Wykazano, ze zastosowany model probkowania oszczednego pozwala na lepszą aproksymacje sygnalu. (Analiza algorytmow rekonstrukcji sygnalu odcinkowo-gladkiego - probkowanie oszczedne).Read More
Publication Year: 2013
Publication Date: 2013-01-01
Language: en
Type: article
Access and Citation
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot