Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2129259959', 'doi': 'https://doi.org/10.1109/tpami.2009.186', 'title': 'Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation', 'display_name': 'Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation', 'publication_year': 2009, 'publication_date': '2009-12-02', 'ids': {'openalex': 'https://openalex.org/W2129259959', 'doi': 'https://doi.org/10.1109/tpami.2009.186', 'mag': '2129259959', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/20724753'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tpami.2009.186', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S199944782', 'display_name': 'IEEE Transactions on Pattern Analysis and Machine Intelligence', 'issn_l': '0162-8828', 'issn': ['0162-8828', '1939-3539', '2160-9292'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5001760915', 'display_name': 'Zhuowen Tu', 'orcid': 'https://orcid.org/0000-0002-1900-2124'}, 'institutions': [{'id': 'https://openalex.org/I161318765', 'display_name': 'University of California, Los Angeles', 'ror': 'https://ror.org/046rm7j60', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I161318765']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'None Zhuowen Tu', 'raw_affiliation_strings': ['[Department of Neurology, University of California, Los Angeles, CA, USA]'], 'affiliations': [{'raw_affiliation_string': '[Department of Neurology, University of California, Los Angeles, CA, USA]', 'institution_ids': ['https://openalex.org/I161318765']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5103173971', 'display_name': 'Xiang Bai', 'orcid': 'https://orcid.org/0000-0003-0006-1287'}, 'institutions': [{'id': 'https://openalex.org/I47720641', 'display_name': 'Huazhong University of Science and Technology', 'ror': 'https://ror.org/00p991c53', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I47720641']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'None Xiang Bai', 'raw_affiliation_strings': ['Dept. of Electron. & Inf. Eng., HuaZhong Univ. of Sci. & Technol., Wuhan, China'], 'affiliations': [{'raw_affiliation_string': 'Dept. of Electron. & Inf. Eng., HuaZhong Univ. of Sci. & Technol., Wuhan, China', 'institution_ids': ['https://openalex.org/I47720641']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 10.538, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 596, 'citation_normalized_percentile': {'value': 0.953219, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '32', 'issue': '10', 'first_page': '1744', 'last_page': '1757'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10627', 'display_name': 'Advanced Image and Video Retrieval Techniques', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10627', 'display_name': 'Advanced Image and Video Retrieval Techniques', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10052', 'display_name': 'Medical Image Segmentation Techniques', 'score': 0.9983, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10824', 'display_name': 'Image Retrieval and Classification Techniques', 'score': 0.9981, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/discriminative-model', 'display_name': 'Discriminative model', 'score': 0.81085247}, {'id': 'https://openalex.org/keywords/context-model', 'display_name': 'Context model', 'score': 0.5116237}, {'id': 'https://openalex.org/keywords/contextual-image-classification', 'display_name': 'Contextual image classification', 'score': 0.484553}, {'id': 'https://openalex.org/keywords/markov-random-field', 'display_name': 'Markov random field', 'score': 0.45911497}], 'concepts': [{'id': 'https://openalex.org/C97931131', 'wikidata': 'https://www.wikidata.org/wiki/Q5282087', 'display_name': 'Discriminative model', 'level': 2, 'score': 0.81085247}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.7624743}, {'id': 'https://openalex.org/C152565575', 'wikidata': 'https://www.wikidata.org/wiki/Q1124538', 'display_name': 'Conditional random field', 'level': 2, 'score': 0.7605402}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.70956796}, {'id': 'https://openalex.org/C89600930', 'wikidata': 'https://www.wikidata.org/wiki/Q1423946', 'display_name': 'Segmentation', 'level': 2, 'score': 0.6668278}, {'id': 'https://openalex.org/C124504099', 'wikidata': 'https://www.wikidata.org/wiki/Q56933', 'display_name': 'Image segmentation', 'level': 3, 'score': 0.6482113}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.578793}, {'id': 'https://openalex.org/C95623464', 'wikidata': 'https://www.wikidata.org/wiki/Q1096149', 'display_name': 'Classifier (UML)', 'level': 2, 'score': 0.5517702}, {'id': 'https://openalex.org/C183322885', 'wikidata': 'https://www.wikidata.org/wiki/Q17007702', 'display_name': 'Context model', 'level': 3, 'score': 0.5116237}, {'id': 'https://openalex.org/C75294576', 'wikidata': 'https://www.wikidata.org/wiki/Q5165192', 'display_name': 'Contextual image classification', 'level': 3, 'score': 0.484553}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.45917702}, {'id': 'https://openalex.org/C2778045648', 'wikidata': 'https://www.wikidata.org/wiki/Q176827', 'display_name': 'Markov random field', 'level': 4, 'score': 0.45911497}, {'id': 'https://openalex.org/C52622490', 'wikidata': 'https://www.wikidata.org/wiki/Q1026626', 'display_name': 'Feature extraction', 'level': 2, 'score': 0.4242941}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.35728016}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.27956355}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.10937849}], 'mesh': [{'descriptor_ui': 'D000465', 'descriptor_name': 'Algorithms', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D001921', 'descriptor_name': 'Brain', 'qualifier_ui': 'Q000033', 'qualifier_name': 'anatomy & histology', 'is_major_topic': True}, {'descriptor_ui': 'D021621', 'descriptor_name': 'Imaging, Three-Dimensional', 'qualifier_ui': 'Q000379', 'qualifier_name': 'methods', 'is_major_topic': True}, {'descriptor_ui': 'D010363', 'descriptor_name': 'Pattern Recognition, Automated', 'qualifier_ui': 'Q000379', 'qualifier_name': 'methods', 'is_major_topic': True}, {'descriptor_ui': 'D000818', 'descriptor_name': 'Animals', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D001921', 'descriptor_name': 'Brain', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006736', 'descriptor_name': 'Horses', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006801', 'descriptor_name': 'Humans', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D021621', 'descriptor_name': 'Imaging, Three-Dimensional', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D008279', 'descriptor_name': 'Magnetic Resonance Imaging', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D008390', 'descriptor_name': 'Markov Chains', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D010363', 'descriptor_name': 'Pattern Recognition, Automated', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D051598', 'descriptor_name': 'Whole Body Imaging', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tpami.2009.186', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S199944782', 'display_name': 'IEEE Transactions on Pattern Analysis and Machine Intelligence', 'issn_l': '0162-8828', 'issn': ['0162-8828', '1939-3539', '2160-9292'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/20724753', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'score': 0.72, 'display_name': 'Reduced inequalities', 'id': 'https://metadata.un.org/sdg/10'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 63, 'referenced_works': ['https://openalex.org/W1528789833', 'https://openalex.org/W1530699444', 'https://openalex.org/W1563961677', 'https://openalex.org/W1572572873', 'https://openalex.org/W1594031697', 'https://openalex.org/W1676820704', 'https://openalex.org/W1875387157', 'https://openalex.org/W1975846642', 'https://openalex.org/W1988790447', 'https://openalex.org/W2000533601', 'https://openalex.org/W2004293194', 'https://openalex.org/W2020999234', 'https://openalex.org/W2024046085', 'https://openalex.org/W2034372240', 'https://openalex.org/W2051809205', 'https://openalex.org/W2051985940', 'https://openalex.org/W2056860348', 'https://openalex.org/W2057175746', 'https://openalex.org/W2069739265', 'https://openalex.org/W2071421993', 'https://openalex.org/W2071881327', 'https://openalex.org/W2081293863', 'https://openalex.org/W2095844239', 'https://openalex.org/W2098678088', 'https://openalex.org/W2100588357', 'https://openalex.org/W2105644991', 'https://openalex.org/W2106962004', 'https://openalex.org/W2107640784', 'https://openalex.org/W2109905341', 'https://openalex.org/W2115135404', 'https://openalex.org/W2116773539', 'https://openalex.org/W2123023145', 'https://openalex.org/W2124189704', 'https://openalex.org/W2126043693', 'https://openalex.org/W2128962821', 'https://openalex.org/W2129018774', 'https://openalex.org/W2132987911', 'https://openalex.org/W2133864802', 'https://openalex.org/W2134557905', 'https://openalex.org/W2140789035', 'https://openalex.org/W2142456468', 'https://openalex.org/W2144197083', 'https://openalex.org/W2146352414', 'https://openalex.org/W2146514558', 'https://openalex.org/W2147880316', 'https://openalex.org/W2149698896', 'https://openalex.org/W2151698683', 'https://openalex.org/W2153635508', 'https://openalex.org/W2155871590', 'https://openalex.org/W2157787449', 'https://openalex.org/W2159080219', 'https://openalex.org/W2159372453', 'https://openalex.org/W2159564241', 'https://openalex.org/W2161969291', 'https://openalex.org/W2162253476', 'https://openalex.org/W2163490908', 'https://openalex.org/W2169415915', 'https://openalex.org/W2294665141', 'https://openalex.org/W2309471314', 'https://openalex.org/W3085162807', 'https://openalex.org/W3097096317', 'https://openalex.org/W3120421331', 'https://openalex.org/W4230931186'], 'related_works': ['https://openalex.org/W2761785940', 'https://openalex.org/W2163278254', 'https://openalex.org/W2147064750', 'https://openalex.org/W2145850538', 'https://openalex.org/W2126747775', 'https://openalex.org/W2124189704', 'https://openalex.org/W2103956678', 'https://openalex.org/W2095844239', 'https://openalex.org/W2092834568', 'https://openalex.org/W1574213390'], 'abstract_inverted_index': {'The': [0, 41, 99, 129, 156], 'notion': [1], 'of': [2, 82, 146, 225, 251, 271], 'using': [3, 44, 222], 'context': [4, 30, 115, 139, 151, 194], 'information': [5, 140], 'for': [6, 245, 267, 273], 'solving': [7], 'high-level': [8], 'vision': [9, 181], 'and': [10, 28, 49, 63, 85, 138, 152, 162, 189, 259], 'medical': [11], 'image': [12, 35, 97, 122, 235, 257], 'segmentation': [13, 236], 'problems': [14, 272], 'has': [15, 261], 'been': [16], 'increasingly': [17], 'realized': [18], 'in': [19, 59, 68, 117, 172, 201], 'the': [20, 61, 108, 120, 168, 176, 205, 228, 249, 252, 262], 'field.': [21], 'However,': [22], 'how': [23], 'to': [24, 119, 124, 164, 178, 211, 232, 239, 264], 'learn': [25, 92], 'an': [26, 34], 'effective': [27], 'efficient': [29], 'model,': [31, 37], 'together': [32], 'with': [33, 150], 'appearance': [36, 148], 'remains': [38], 'mostly': [39, 209], 'unknown.': [40], 'current': [42], 'literature': [43], 'Markov': [45], 'Random': [46, 51], 'Fields': [47, 52], '(MRFs)': [48], 'Conditional': [50], '(CRFs)': [53], 'often': [54], 'involves': [55], 'specific': [56], 'algorithm': [57, 130, 159, 177, 230, 254], 'design': [58], 'which': [60], 'modeling': [62], 'computing': [64], 'stages': [65], 'are': [66, 111, 208], 'studied': [67], 'isolation.': [69], 'In': [70], 'this': [71, 246], 'paper,': [72], 'we': [73, 90, 174], 'propose': [74], 'a': [75, 80, 93, 126, 143, 197, 268], 'learning': [76], 'algorithm,': [77], 'auto-context.': [78], 'Given': [79], 'set': [81], 'training': [83], 'images': [84, 203], 'their': [86], 'corresponding': [87], 'label': [88], 'maps,': [89], 'first': [91], 'classifier': [94, 110], 'on': [95], 'local': [96], 'patches.': [98], 'discriminative': [100, 158], 'probability': [101], '(or': [102], 'classification': [103], 'confidence)': [104], 'maps': [105], 'created': [106], 'by': [107, 141], 'learned': [109], 'then': [112, 131], 'used': [113, 266], 'as': [114], 'information,': [116], 'addition': [118], 'original': [121], 'patches,': [123], 'train': [125], 'new': [127], 'classifier.': [128], 'iterates': [132], 'until': [133], 'convergence.': [134], 'Auto-context': [135], 'integrates': [136], 'low-level': [137, 147], 'fusing': [142], 'large': [144], 'number': [145], 'features': [149], 'implicit': [153], 'shape': [154], 'information.': [155], 'resulting': [157, 220], 'is': [160, 237], 'general': [161], 'easy': [163], 'implement.': [165], 'Under': [166], 'nearly': [167], 'same': [169], 'parameter': [170], 'settings': [171], 'training,': [173], 'apply': [175], 'three': [179], 'challenging': [180], 'applications:': [182], 'foreground/background': [183], 'segregation,': [184], 'human': [185], 'body': [186], 'configuration': [187], 'estimation,': [188], 'scene': [190], 'region': [191], 'labeling.': [192], 'Moreover,': [193], 'also': [195], 'plays': [196], 'very': [198], 'important': [199], 'role': [200], 'medical/brain': [202], 'where': [204], 'anatomical': [206], 'structures': [207], 'constrained': [210], 'relatively': [212], 'fixed': [213], 'positions.': [214], 'With': [215], 'only': [216], 'some': [217], 'slight': [218], 'changes': [219], 'from': [221], '3D': [223], 'instead': [224], '2D': [226], 'features,': [227], 'auto-context': [229], 'applied': [231], 'brain': [233], 'MRI': [234], 'shown': [238], 'outperform': [240], 'state-of-the-art': [241], 'algorithms': [242], 'specifically': [243], 'designed': [244], 'domain.': [247], 'Furthermore,': [248], 'scope': [250], 'proposed': [253], 'goes': [255], 'beyond': [256], 'analysis': [258], 'it': [260], 'potential': [263], 'be': [265], 'wide': [269], 'variety': [270], 'structured': [274], 'prediction': [275], 'problems.': [276]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2129259959', 'counts_by_year': [{'year': 2024, 'cited_by_count': 15}, {'year': 2023, 'cited_by_count': 19}, {'year': 2022, 'cited_by_count': 17}, {'year': 2021, 'cited_by_count': 40}, {'year': 2020, 'cited_by_count': 56}, {'year': 2019, 'cited_by_count': 59}, {'year': 2018, 'cited_by_count': 72}, {'year': 2017, 'cited_by_count': 71}, {'year': 2016, 'cited_by_count': 64}, {'year': 2015, 'cited_by_count': 48}, {'year': 2014, 'cited_by_count': 44}, {'year': 2013, 'cited_by_count': 56}, {'year': 2012, 'cited_by_count': 15}], 'updated_date': '2025-01-16T03:09:38.639478', 'created_date': '2016-06-24'}