Title: Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora
Abstract:Mining cluster evolution from multiple correlated time-varying text corpora is important in exploratory text analytics. In this paper, we propose an approach called evolutionary hierarchical Dirichlet...Mining cluster evolution from multiple correlated time-varying text corpora is important in exploratory text analytics. In this paper, we propose an approach called evolutionary hierarchical Dirichlet processes (EvoHDP) to discover interesting cluster evolution patterns from such text data. We formulate the EvoHDP as a series of hierarchical Dirichlet processes~(HDP) by adding time dependencies to the adjacent epochs, and propose a cascaded Gibbs sampling scheme to infer the model. This approach can discover different evolving patterns of clusters, including emergence, disappearance, evolution within a corpus and across different corpora. Experiments over synthetic and real-world multiple correlated time-varying data sets illustrate the effectiveness of EvoHDP on discovering cluster evolution patterns.Read More
Publication Year: 2010
Publication Date: 2010-07-25
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 105
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot