Title: ON IMPLICATIONS OF EQUIVALENCE PRINCIPLE FOR MODIFIED GRAVITY THEORIES
Abstract:One of the manifestations of Einstein Equivalence Principle (EEP) is that a freely falling particle in a gravitational field is following a geodesic. In Einstein's general relativity (GR) this is buil...One of the manifestations of Einstein Equivalence Principle (EEP) is that a freely falling particle in a gravitational field is following a geodesic. In Einstein's general relativity (GR) this is built in the formulation by assuming the connection to be the Levi-Civita connection. The latter may, however, be demanded to be implied by the dynamics of a generic modified gravity theory, within the Palatini formulation. We show that for extensions of the Einstein GR which are described by a Lagrangian [Formula: see text], where g μν is the metric and R μαβν is the Riemann curvature tensor, this manifestation of EEP is only fulfilled for a special class of Lagrangians, the Lovelock gravity theories. Our analysis also implies that within the above mentioned set of modified gravity theories only for Lovelock gravity theories metric and Palatini formulations are equivalent.Read More
Publication Year: 2011
Publication Date: 2011-12-31
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 1
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot