Title: Vibration Suppression of Thin-Walled Workpiece Machining Based on Electromagnetic Induction
Abstract:Thin-walled workpieces are largely manufactured in the aerospace industry. The manufacturing process has been a problem due to its flexibility, and chatter vibrations are apt to occur, which restricts...Thin-walled workpieces are largely manufactured in the aerospace industry. The manufacturing process has been a problem due to its flexibility, and chatter vibrations are apt to occur, which restricts the machining efficiency and quality. A vibration suppression device for thin-walled workpieces is presented based on the electromagnetic induction principle, which utilizes machining vibrations to generate resistant force on the workpiece. The formulated force varies with the workpiece vibration velocity, but in an opposite direction. Excitation tests using the electromagnetic shaker illustrate that the device is effective in vibration attenuation. Finally, machining tests are carried out with applications to two thin-walled structures for further verification. The machining vibrations and surface quality demonstrate the damping promotion of the workpiece assembly, and milling stability limit is increased by more than twofold.Read More
Publication Year: 2014
Publication Date: 2014-09-29
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 37
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot