Title: Phase and Dispersion of Cylindrical Surface Waves
Abstract:Most theoretical and experimental work on surface waves does not take into account dispersion. When propagating along a flat planar half space, surface waves are known as Rayleigh waves and are not di...Most theoretical and experimental work on surface waves does not take into account dispersion. When propagating along a flat planar half space, surface waves are known as Rayleigh waves and are not dispersive. When the radii of curvature are large, surface waves behave like Rayleigh waves. However, when the radii are small, dispersion becomes a contributing factor. Experimental measurements indicate that along with dispersion, there appears to be a strong phase shift effect as the wave propagates along the circumferential path of cylindrical specimens. The phase shift effect is observed even under conditions where dispersion is not detected. Classical theories provide the velocity-frequency equations, which represent the dispersion relationships, for surface waves. An alternate theoretical approach is discussed in this article that demonstrates the phase-dispersion relationship for cylindrical surface waves. Experimental data support the theoretical conclusions and indicate phase shift is directly related to the radius of curvature to an extent much more sensitive than dispersion.Read More
Publication Year: 2010
Publication Date: 2010-10-15
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 6
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot