Title: Hypothesis test for paired samples in the presence of missing data
Abstract:Missing data are present in almost all statistical analysis. In simple paired design tests, when some subject has one of the involved variables missing in the so-called partially overlapping samples s...Missing data are present in almost all statistical analysis. In simple paired design tests, when some subject has one of the involved variables missing in the so-called partially overlapping samples scheme, it is usually discarded for the analysis. The lack of consistency between the information reported in the univariate and multivariate analysis is, perhaps, the main consequence. Although the randomness on the missing mechanism (missingness completely at random) is an usual and needed assumption for this particular situation, missing data presence could lead to serious inconsistencies on the reported conclusions. In this paper, the authors develop a simple and direct procedure which allows using the whole available information in order to perform paired tests. In particular, the proposed methodology is applied to check the equality among the means from two paired samples. In addition, the use of two different resampling techniques is also explored. Finally, real-world data are analysed.Read More
Publication Year: 2012
Publication Date: 2012-10-18
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 15
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot