Title: Fatigue crack propagation assessment based on residual stresses obtained through cut‐compliance technique
Abstract:ABSTRACT Crack growth rate versus crack length curves of heavily overloaded parent material specimens and fatigue crack propagation curves of friction‐stir‐welded aluminium samples are presented. It i...ABSTRACT Crack growth rate versus crack length curves of heavily overloaded parent material specimens and fatigue crack propagation curves of friction‐stir‐welded aluminium samples are presented. It is shown that in both cases the residual stresses have a strong effect on the crack propagation behaviour under constant and variable amplitude loading. As a simplified engineering approach, it is assumed in this paper, that in both cases residual stresses are the main and only factor influencing crack growth. Therefore fatigue crack propagation predictions are performed by adding the residual stresses to the applied loading and by neglecting the possible effects of overloading and friction stir welding on the parent material properties. For a quantitative assessment of the residual stress effects, the stress intensity factor due to residual stresses K res is determined directly with the so‐called cut‐compliance method (incremental slitting). These measurements are particularly suited as input parameters for the software packages AFGROW and NASGRO 3.0, which are widely used for fatigue crack growth predictions under constant and variable amplitude loading. The prediction made in terms of crack propagation rates versus crack length and crack length versus cycles generally shows a good agreement with the measured values.Read More
Publication Year: 2006
Publication Date: 2006-09-11
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 39
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot