Title: Robust non-linear control through neuroevolution
Abstract:Many complex control problems require sophisticated solutions that are not amenable to traditional controller design. Not only is it difficult to model real world systems, but often it is unclear what...Many complex control problems require sophisticated solutions that are not amenable to traditional controller design. Not only is it difficult to model real world systems, but often it is unclear what kind of behavior is required to solve the task. Reinforcement learning approaches have made progress in such problems, but have so far not scaled well. Neuroevolution, has improved upon conventional reinforcement learning, but has still not been successful in full-scale, non-linear control problems. This dissertation develops a methodology for solving real world control tasks consisting of three components: (1) an efficient neuroevolution algorithm that solves difficult non-linear control tasks by coevolving neurons, (2) an incremental evolution method to scale the algorithm to the most challenging tasks, and (3) a technique for making controllers robust so that they can transfer from simulation to the real world. The method is faster than other approaches on a set of difficult learning benchmarks, and is used in two full-scale control tasks demonstrating its applicability to real world problems.Read More
Publication Year: 2003
Publication Date: 2003-01-01
Language: en
Type: dissertation
Access and Citation
Cited By Count: 150
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot