Title: Pieri's formula for flag manifolds and Schubert polynomials
Abstract:We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schuber...We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri's formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain intersections of Schubert varieties. This method allows us to compute additional structure constants for the cohomology ring, some of which we express in terms of paths in the Bruhat order on thesymmetric group, which in turn yields an enumerative result about the Bruhat order.Read More