Title: Anomalous stabilizing and destabilizing effects in some cyclic π-electron systems
Abstract:Ab initio computational studies have been carried out for three molecules that are commonly classed as antiaromatic: cyclobutadiene (1), 1,3-diazacyclobutadiene (7), and 1,4-dihydropyrazine (6). Their...Ab initio computational studies have been carried out for three molecules that are commonly classed as antiaromatic: cyclobutadiene (1), 1,3-diazacyclobutadiene (7), and 1,4-dihydropyrazine (6). Their dinitro and diamino derivatives were also investigated. Stabilizing or destabilizing energetic effects were quantified by means of the isodesmic reaction procedure at the MP2/6-31G*//HF/3-21G level, and calculated molecular electrostatic potentials (HF/STO-5G//HF/3-21G) were used as a probe of electron delocalization. Our results do not show extensive delocalization in the π systems of any one of the three parent molecules. The destabilization found for 1 and 7 is attributed primarily to strain and to repulsion between the localized π electrons in the C=C and C=N bonds, respectively. However, 6 is significantly stabilized, presumably due to limited delocalization of the nitrogen lone pairs. NH 2 groups are highly stabilizing, apparently because of lone pair delocalization. NO 2 is neither uniformly stabilizing nor destabilizing.Read More