Publication Information

Basic Information

Access and Citation

AI Researcher Chatbot

Get quick answers to your questions about the article from our AI researcher chatbot

Primary Location

Authors

Topics

Keywords

Related Works

Title: $Optimum Surface Profile for the Enclosed Pocket Hydrodynamic Gas Thrust Bearing
Abstract: Abstract The relative importance, with respect to load-carrying capacity, of each geometrical parameter in a self-lubricated thrust bearing, with an enclosed pocket, is examined at Λ = 0.55. The bearing geometries, including the pocket configurations, for three types of film profiles are optimized. The film profiles in the pocket considered are flat-step, tapered, and taper-step, Fig. 1. Of these three profiles of film, the taper-step film, in an enclosed-pocket bearing, offers the best load-carrying capacity. The variations of load versus each geometrical parameter are shown graphically to facilitate design procedure. These results are obtained from the solution of Reynold’s equation for a compressible fluid film as approximated by the finite-difference method [5]. The load-carrying capacity of an enclosed-pocket bearing with taper-step profile can be significantly higher than that of a bearing with the spiral-grooved pattern under the conditions investigated.