Title: Application of Machine Learning Techniques to Predict Software Reliability
Abstract:In this paper, the authors employed machine learning techniques, specifically, Back propagation trained neural network (BPNN), Group method of data handling (GMDH), Counter propagation neural network ...In this paper, the authors employed machine learning techniques, specifically, Back propagation trained neural network (BPNN), Group method of data handling (GMDH), Counter propagation neural network (CPNN), Dynamic evolving neuro–fuzzy inference system (DENFIS), Genetic Programming (GP), TreeNet, statistical multiple linear regression (MLR), and multivariate adaptive regression splines (MARS), to accurately forecast software reliability. Their effectiveness is demonstrated on three datasets taken from literature, where performance is compared in terms of normalized root mean square error (NRMSE) obtained in the test set. From rigorous experiments conducted, it was observed that GP outperformed all techniques in all datasets, with GMDH coming a close second.Read More
Publication Year: 2010
Publication Date: 2010-07-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 16
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot