Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2060182887', 'doi': 'https://doi.org/10.1073/pnas.1408184111', 'title': 'A general construction for parallelizing Metropolis−Hastings algorithms', 'display_name': 'A general construction for parallelizing Metropolis−Hastings algorithms', 'publication_year': 2014, 'publication_date': '2014-11-24', 'ids': {'openalex': 'https://openalex.org/W2060182887', 'doi': 'https://doi.org/10.1073/pnas.1408184111', 'mag': '2060182887', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/25422442', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/4267367'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1073/pnas.1408184111', 'pdf_url': 'https://www.pnas.org/content/pnas/111/49/17408.full.pdf', 'source': {'id': 'https://openalex.org/S125754415', 'display_name': 'Proceedings of the National Academy of Sciences', 'issn_l': '0027-8424', 'issn': ['0027-8424', '1091-6490'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320052', 'host_organization_name': 'National Academy of Sciences', 'host_organization_lineage': ['https://openalex.org/P4310320052'], 'host_organization_lineage_names': ['National Academy of Sciences'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'bronze', 'oa_url': 'https://www.pnas.org/content/pnas/111/49/17408.full.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5050889229', 'display_name': 'Ben Calderhead', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I47508984', 'display_name': 'Imperial College London', 'ror': 'https://ror.org/041kmwe10', 'country_code': 'GB', 'type': 'education', 'lineage': ['https://openalex.org/I47508984']}], 'countries': ['GB'], 'is_corresponding': True, 'raw_author_name': 'Ben Calderhead', 'raw_affiliation_strings': ['Dept. of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom#TAB#'], 'affiliations': [{'raw_affiliation_string': 'Dept. of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom#TAB#', 'institution_ids': ['https://openalex.org/I47508984']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5050889229'], 'corresponding_institution_ids': ['https://openalex.org/I47508984'], 'apc_list': None, 'apc_paid': None, 'fwci': 8.918, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 127, 'citation_normalized_percentile': {'value': 0.99983, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 98, 'max': 99}, 'biblio': {'volume': '111', 'issue': '49', 'first_page': '17408', 'last_page': '17413'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10044', 'display_name': 'Protein Structure and Dynamics', 'score': 0.9953, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, {'id': 'https://openalex.org/T10591', 'display_name': 'Theoretical and Computational Physics', 'score': 0.9921, 'subfield': {'id': 'https://openalex.org/subfields/3104', 'display_name': 'Condensed Matter Physics'}, 'field': {'id': 'https://openalex.org/fields/31', 'display_name': 'Physics and Astronomy'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/metropolis–hastings-algorithm', 'display_name': 'Metropolis–Hastings algorithm', 'score': 0.80079955}, {'id': 'https://openalex.org/keywords/robustness', 'display_name': 'Robustness', 'score': 0.5008383}], 'concepts': [{'id': 'https://openalex.org/C111350023', 'wikidata': 'https://www.wikidata.org/wiki/Q1191869', 'display_name': 'Markov chain Monte Carlo', 'level': 3, 'score': 0.8983853}, {'id': 'https://openalex.org/C204693719', 'wikidata': 'https://www.wikidata.org/wiki/Q910810', 'display_name': 'Metropolis–Hastings algorithm', 'level': 4, 'score': 0.80079955}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.76545143}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.5879054}, {'id': 'https://openalex.org/C13153151', 'wikidata': 'https://www.wikidata.org/wiki/Q1639846', 'display_name': 'Hybrid Monte Carlo', 'level': 4, 'score': 0.5716433}, {'id': 'https://openalex.org/C19499675', 'wikidata': 'https://www.wikidata.org/wiki/Q232207', 'display_name': 'Monte Carlo method', 'level': 2, 'score': 0.54951525}, {'id': 'https://openalex.org/C98763669', 'wikidata': 'https://www.wikidata.org/wiki/Q176645', 'display_name': 'Markov chain', 'level': 2, 'score': 0.50528246}, {'id': 'https://openalex.org/C63479239', 'wikidata': 'https://www.wikidata.org/wiki/Q7353546', 'display_name': 'Robustness (evolution)', 'level': 3, 'score': 0.5008383}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.3855389}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.22333834}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.20733994}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.17952928}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.16785607}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.07495922}, {'id': 'https://openalex.org/C55493867', 'wikidata': 'https://www.wikidata.org/wiki/Q7094', 'display_name': 'Biochemistry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C185592680', 'wikidata': 'https://www.wikidata.org/wiki/Q2329', 'display_name': 'Chemistry', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C104317684', 'wikidata': 'https://www.wikidata.org/wiki/Q7187', 'display_name': 'Gene', 'level': 2, 'score': 0.0}], 'mesh': [], 'locations_count': 4, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1073/pnas.1408184111', 'pdf_url': 'https://www.pnas.org/content/pnas/111/49/17408.full.pdf', 'source': {'id': 'https://openalex.org/S125754415', 'display_name': 'Proceedings of the National Academy of Sciences', 'issn_l': '0027-8424', 'issn': ['0027-8424', '1091-6490'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320052', 'host_organization_name': 'National Academy of Sciences', 'host_organization_lineage': ['https://openalex.org/P4310320052'], 'host_organization_lineage_names': ['National Academy of Sciences'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc4267367', 'pdf_url': 'https://europepmc.org/articles/pmc4267367?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267367', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/25422442', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1073/pnas.1408184111', 'pdf_url': 'https://www.pnas.org/content/pnas/111/49/17408.full.pdf', 'source': {'id': 'https://openalex.org/S125754415', 'display_name': 'Proceedings of the National Academy of Sciences', 'issn_l': '0027-8424', 'issn': ['0027-8424', '1091-6490'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320052', 'host_organization_name': 'National Academy of Sciences', 'host_organization_lineage': ['https://openalex.org/P4310320052'], 'host_organization_lineage_names': ['National Academy of Sciences'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'display_name': 'Sustainable cities and communities', 'score': 0.78, 'id': 'https://metadata.un.org/sdg/11'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 37, 'referenced_works': ['https://openalex.org/W1479979375', 'https://openalex.org/W1482570420', 'https://openalex.org/W1545319692', 'https://openalex.org/W1556278552', 'https://openalex.org/W1658503071', 'https://openalex.org/W1743960514', 'https://openalex.org/W1840847274', 'https://openalex.org/W1857342729', 'https://openalex.org/W1972309199', 'https://openalex.org/W2006384093', 'https://openalex.org/W2027235634', 'https://openalex.org/W2029164135', 'https://openalex.org/W2030550396', 'https://openalex.org/W2041003730', 'https://openalex.org/W2047978125', 'https://openalex.org/W2048971218', 'https://openalex.org/W2056760934', 'https://openalex.org/W2059448777', 'https://openalex.org/W2073412813', 'https://openalex.org/W2075954168', 'https://openalex.org/W2079804417', 'https://openalex.org/W2090251478', 'https://openalex.org/W2091225596', 'https://openalex.org/W2109343155', 'https://openalex.org/W2110401950', 'https://openalex.org/W2122891730', 'https://openalex.org/W2133661642', 'https://openalex.org/W2138309709', 'https://openalex.org/W2143358994', 'https://openalex.org/W2145536610', 'https://openalex.org/W2155621115', 'https://openalex.org/W2160065175', 'https://openalex.org/W2162340617', 'https://openalex.org/W2954040150', 'https://openalex.org/W3104433300', 'https://openalex.org/W316347119', 'https://openalex.org/W621546036'], 'related_works': ['https://openalex.org/W4288282435', 'https://openalex.org/W4226314133', 'https://openalex.org/W4214552121', 'https://openalex.org/W3098348269', 'https://openalex.org/W3037866298', 'https://openalex.org/W3037147032', 'https://openalex.org/W3016462294', 'https://openalex.org/W3000025630', 'https://openalex.org/W2986820836', 'https://openalex.org/W2959831473'], 'abstract_inverted_index': {'Markov': [0, 68], 'chain': [1, 47, 69], 'Monte': [2, 145, 164], 'Carlo': [3, 146, 165], 'methods': [4], '(MCMC)': [5], 'are': [6], 'essential': [7], 'tools': [8], 'for': [9, 43, 134], 'solving': [10], 'many': [11], 'modern-day': [12], 'statistical': [13, 112], 'and': [14, 63, 93, 111, 125, 158], 'computational': [15, 109, 170], 'problems;': [16], 'however,': [17], 'a': [18, 34, 45, 66, 115, 135], 'major': [19], 'limitation': [20], 'is': [21, 90], 'the': [22, 38, 71, 76, 80, 108, 153], 'inherently': [23], 'sequential': [24], 'nature': [25], 'of': [26, 37, 114, 117, 138, 155, 163], 'these': [27], 'algorithms.': [28], 'In': [29], 'this': [30, 100], 'paper,': [31], 'we': [32, 129], 'propose': [33], 'natural': [35], 'generalization': [36], 'Metropolis-Hastings': [39], 'algorithm': [40], 'that': [41, 75], 'allows': [42, 133], 'parallelizing': [44], 'single': [46], 'using': [48, 139], 'existing': [49, 118], 'MCMC': [50, 119], 'methods.': [51], 'We': [52, 97], 'do': [53], 'so': [54], 'by': [55], 'proposing': [56], 'multiple': [57], 'points': [58, 73], 'in': [59, 160], 'parallel,': [60], 'then': [61], 'constructing': [62], 'sampling': [64], 'from': [65], 'finite-state': [67], 'on': [70], 'proposed': [72], 'such': [74], 'overall': [77], 'procedure': [78], 'has': [79], 'correct': [81], 'target': [82], 'density': [83], 'as': [84], 'its': [85], 'stationary': [86], 'distribution.': [87], 'Our': [88], 'approach': [89, 149], 'generally': [91], 'applicable': [92], 'straightforward': [94], 'to': [95, 105, 152], 'implement.': [96], 'demonstrate': [98], 'how': [99, 131], 'construction': [101], 'may': [102], 'be': [103], 'used': [104], 'greatly': [106], 'increase': [107], 'speed': [110], 'efficiency': [113], 'variety': [116], 'methods,': [120], 'including': [121], 'Metropolis-Adjusted': [122], 'Langevin': [123], 'Algorithms': [124], 'Adaptive': [126], 'MCMC.': [127], 'Furthermore,': [128], 'show': [130], 'it': [132], 'principled': [136], 'way': [137], 'every': [140], 'integration': [141], 'step': [142], 'within': [143], 'Hamiltonian': [144], 'methods;': [147], 'our': [148], 'increases': [150], 'robustness': [151], 'choice': [154], 'algorithmic': [156], 'parameters': [157], 'results': [159], 'increased': [161], 'accuracy': [162], 'estimates': [166], 'with': [167], 'little': [168], 'extra': [169], 'cost.': [171]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2060182887', 'counts_by_year': [{'year': 2024, 'cited_by_count': 10}, {'year': 2023, 'cited_by_count': 9}, {'year': 2022, 'cited_by_count': 11}, {'year': 2021, 'cited_by_count': 12}, {'year': 2020, 'cited_by_count': 19}, {'year': 2019, 'cited_by_count': 11}, {'year': 2018, 'cited_by_count': 14}, {'year': 2017, 'cited_by_count': 14}, {'year': 2016, 'cited_by_count': 14}, {'year': 2015, 'cited_by_count': 9}, {'year': 2014, 'cited_by_count': 1}], 'updated_date': '2024-12-25T07:16:15.474624', 'created_date': '2016-06-24'}