Title: SOME RESULTS ON ENTROPY AND SEQUENCE ENTROPY
Abstract:In this paper we study some formulas involving metric and topological entropy and sequence entropy. We summarize some classical formulas satisfied by metric and topological entropy and ask the questio...In this paper we study some formulas involving metric and topological entropy and sequence entropy. We summarize some classical formulas satisfied by metric and topological entropy and ask the question whether the same or similar results hold for sequence entropy. In general the answer is negative; still some questions involving these formulas remain open. We make a special emphasis on the commutativity formula for topological entropy h(f ◦ g)=h(g ◦ f) recently proved by Kolyada and Snoha. We give a new elementary proof and use similar ideas to prove commutativity formulas for metric entropy and other topological invariants. Finally we prove a Misiurewicz–Szlenk type inequality for topological sequence entropy for piecewise monotone maps on the interval I=[0, 1]. For this purpose we introduce the notion of upper entropy.Read More
Publication Year: 1999
Publication Date: 1999-09-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 13
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot