Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2047152541', 'doi': 'https://doi.org/10.1137/140961791', 'title': 'A Proximal Stochastic Gradient Method with Progressive Variance Reduction', 'display_name': 'A Proximal Stochastic Gradient Method with Progressive Variance Reduction', 'publication_year': 2014, 'publication_date': '2014-01-01', 'ids': {'openalex': 'https://openalex.org/W2047152541', 'doi': 'https://doi.org/10.1137/140961791', 'mag': '2047152541'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1137/140961791', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S928796702', 'display_name': 'SIAM Journal on Optimization', 'issn_l': '1052-6234', 'issn': ['1052-6234', '1095-7189'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320508', 'host_organization_name': 'Society for Industrial and Applied Mathematics', 'host_organization_lineage': ['https://openalex.org/P4310320508'], 'host_organization_lineage_names': ['Society for Industrial and Applied Mathematics'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/1403.4699', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5081758689', 'display_name': 'Lin Xiao', 'orcid': 'https://orcid.org/0000-0002-9759-3898'}, 'institutions': [{'id': 'https://openalex.org/I1290206253', 'display_name': 'Microsoft (United States)', 'ror': 'https://ror.org/00d0nc645', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1290206253']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Lin Xiao', 'raw_affiliation_strings': ['Microsoft , USA .'], 'affiliations': [{'raw_affiliation_string': 'Microsoft , USA .', 'institution_ids': ['https://openalex.org/I1290206253']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5100378783', 'display_name': 'Tong Zhang', 'orcid': 'https://orcid.org/0000-0002-3506-0180'}, 'institutions': [{'id': 'https://openalex.org/I102322142', 'display_name': 'Rutgers, The State University of New Jersey', 'ror': 'https://ror.org/05vt9qd57', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I102322142']}, {'id': 'https://openalex.org/I98301712', 'display_name': 'Baidu (China)', 'ror': 'https://ror.org/03vs3wt56', 'country_code': 'CN', 'type': 'company', 'lineage': ['https://openalex.org/I98301712']}], 'countries': ['CN', 'US'], 'is_corresponding': False, 'raw_author_name': 'Tong Zhang', 'raw_affiliation_strings': ['Baidu Inc', 'Rutgers - The State University of New Jersey, New Brunswick'], 'affiliations': [{'raw_affiliation_string': 'Rutgers - The State University of New Jersey, New Brunswick', 'institution_ids': ['https://openalex.org/I102322142']}, {'raw_affiliation_string': 'Baidu Inc', 'institution_ids': ['https://openalex.org/I98301712']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 3, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 57.337, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 624, 'citation_normalized_percentile': {'value': 0.999934, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '24', 'issue': '4', 'first_page': '2057', 'last_page': '2075'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11612', 'display_name': 'Stochastic Gradient Optimization Techniques', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10136', 'display_name': 'Statistical Methods and Inference', 'score': 0.988, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/proximal-gradient-methods', 'display_name': 'Proximal Gradient Methods', 'score': 0.75113934}, {'id': 'https://openalex.org/keywords/variance-reduction', 'display_name': 'Variance reduction', 'score': 0.5429355}, {'id': 'https://openalex.org/keywords/minification', 'display_name': 'Minification', 'score': 0.51108253}], 'concepts': [{'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.7956619}, {'id': 'https://openalex.org/C10494615', 'wikidata': 'https://www.wikidata.org/wiki/Q17086765', 'display_name': 'Proximal Gradient Methods', 'level': 4, 'score': 0.75113934}, {'id': 'https://openalex.org/C145446738', 'wikidata': 'https://www.wikidata.org/wiki/Q319913', 'display_name': 'Convex function', 'level': 3, 'score': 0.5907714}, {'id': 'https://openalex.org/C62644790', 'wikidata': 'https://www.wikidata.org/wiki/Q3454689', 'display_name': 'Variance reduction', 'level': 3, 'score': 0.5429355}, {'id': 'https://openalex.org/C112680207', 'wikidata': 'https://www.wikidata.org/wiki/Q714886', 'display_name': 'Regular polygon', 'level': 2, 'score': 0.5230221}, {'id': 'https://openalex.org/C147764199', 'wikidata': 'https://www.wikidata.org/wiki/Q6865248', 'display_name': 'Minification', 'level': 2, 'score': 0.51108253}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.50969386}, {'id': 'https://openalex.org/C115680565', 'wikidata': 'https://www.wikidata.org/wiki/Q5977448', 'display_name': 'Gradient method', 'level': 2, 'score': 0.5020032}, {'id': 'https://openalex.org/C14036430', 'wikidata': 'https://www.wikidata.org/wiki/Q3736076', 'display_name': 'Function (biology)', 'level': 2, 'score': 0.49633962}, {'id': 'https://openalex.org/C28826006', 'wikidata': 'https://www.wikidata.org/wiki/Q33521', 'display_name': 'Applied mathematics', 'level': 1, 'score': 0.45044273}, {'id': 'https://openalex.org/C196083921', 'wikidata': 'https://www.wikidata.org/wiki/Q7915758', 'display_name': 'Variance (accounting)', 'level': 2, 'score': 0.44103462}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.101793915}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C121955636', 'wikidata': 'https://www.wikidata.org/wiki/Q4116214', 'display_name': 'Accounting', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C78458016', 'wikidata': 'https://www.wikidata.org/wiki/Q840400', 'display_name': 'Evolutionary biology', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C19499675', 'wikidata': 'https://www.wikidata.org/wiki/Q232207', 'display_name': 'Monte Carlo method', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C144133560', 'wikidata': 'https://www.wikidata.org/wiki/Q4830453', 'display_name': 'Business', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.0}], 'mesh': [], 'locations_count': 3, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1137/140961791', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S928796702', 'display_name': 'SIAM Journal on Optimization', 'issn_l': '1052-6234', 'issn': ['1052-6234', '1095-7189'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320508', 'host_organization_name': 'Society for Industrial and Applied Mathematics', 'host_organization_lineage': ['https://openalex.org/P4310320508'], 'host_organization_lineage_names': ['Society for Industrial and Applied Mathematics'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1403.4699', 'pdf_url': 'https://arxiv.org/pdf/1403.4699', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'http://arxiv.org/abs/1403.4699', 'pdf_url': 'http://arxiv.org/pdf/1403.4699', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1403.4699', 'pdf_url': 'https://arxiv.org/pdf/1403.4699', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 32, 'referenced_works': ['https://openalex.org/W1480376833', 'https://openalex.org/W1512309675', 'https://openalex.org/W1523661875', 'https://openalex.org/W1554944419', 'https://openalex.org/W1807715286', 'https://openalex.org/W1939652453', 'https://openalex.org/W1988795359', 'https://openalex.org/W2019569173', 'https://openalex.org/W2030161963', 'https://openalex.org/W2055467852', 'https://openalex.org/W2061228897', 'https://openalex.org/W2061570747', 'https://openalex.org/W2073750241', 'https://openalex.org/W2080844831', 'https://openalex.org/W2095984592', 'https://openalex.org/W2096199223', 'https://openalex.org/W2098741260', 'https://openalex.org/W2100556411', 'https://openalex.org/W2105875671', 'https://openalex.org/W2107438106', 'https://openalex.org/W2117686388', 'https://openalex.org/W2124541940', 'https://openalex.org/W2134130436', 'https://openalex.org/W2150102617', 'https://openalex.org/W2162069736', 'https://openalex.org/W2162287622', 'https://openalex.org/W2164301055', 'https://openalex.org/W2167302917', 'https://openalex.org/W2616657226', 'https://openalex.org/W2963156201', 'https://openalex.org/W3103657382', 'https://openalex.org/W3141595720'], 'related_works': ['https://openalex.org/W3147739796', 'https://openalex.org/W3127841625', 'https://openalex.org/W3123504125', 'https://openalex.org/W2963086517', 'https://openalex.org/W2951335402', 'https://openalex.org/W2564735875', 'https://openalex.org/W2364728921', 'https://openalex.org/W2348618647', 'https://openalex.org/W2343209457', 'https://openalex.org/W1983212821'], 'abstract_inverted_index': {'We': [0, 38, 60], 'consider': [1], 'the': [2, 6, 14, 25, 40, 78, 81, 94, 106, 112, 129, 135], 'problem': [3], 'of': [4, 8, 16, 20, 80, 87, 121], 'minimizing': [5], 'sum': [7], 'two': [9], 'convex': [10, 30], 'functions:': [11], 'one': [12], 'is': [13, 27, 44, 124], 'average': [15], 'a': [17, 28, 34, 64, 72, 115], 'large': [18], 'number': [19], 'smooth': [21], 'component': [22], 'functions,': [23], 'and': [24, 62, 134], 'other': [26], 'general': [29], 'function': [31, 43], 'that': [32, 105], 'admits': [33], 'simple': [35], 'proximal': [36, 66, 130, 137], 'mapping.': [37], 'assume': [39], 'whole': [41], 'objective': [42, 108], 'strongly': [45], 'convex.': [46], 'Such': [47], 'problems': [48], 'often': [49], 'arise': [50], 'in': [51], 'machine': [52], 'learning,': [53], 'known': [54], 'as': [55, 93], 'regularized': [56], 'empirical': [57], 'risk': [58], 'minimization.': [59], 'propose': [61], 'analyze': [63], 'new': [65], 'stochastic': [67, 82, 96, 138], 'gradient': [68, 97, 101, 132, 139], 'method,': [69], 'which': [70], 'uses': [71], 'multistage': [73], 'scheme': [74], 'to': [75, 111], 'progressively': [76], 'reduce': [77], 'variance': [79], 'gradient.': [83], 'While': [84], 'each': [85], 'iteration': [86], 'this': [88, 122], 'algorithm': [89], 'has': [90], 'similar': [91], 'cost': [92], 'classical': [95], 'method': [98, 123, 133], '(or': [99], 'incremental': [100], 'method),': [102], 'we': [103], 'show': [104], 'expected': [107], 'value': [109], 'converges': [110], 'optimum': [113], 'at': [114], 'geometric': [116], 'rate.': [117], 'The': [118], 'overall': [119], 'complexity': [120], 'much': [125], 'lower': [126], 'than': [127], 'both': [128], 'full': [131], 'standard': [136], 'method.': [140]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2047152541', 'counts_by_year': [{'year': 2024, 'cited_by_count': 14}, {'year': 2023, 'cited_by_count': 36}, {'year': 2022, 'cited_by_count': 40}, {'year': 2021, 'cited_by_count': 55}, {'year': 2020, 'cited_by_count': 75}, {'year': 2019, 'cited_by_count': 103}, {'year': 2018, 'cited_by_count': 80}, {'year': 2017, 'cited_by_count': 83}, {'year': 2016, 'cited_by_count': 84}, {'year': 2015, 'cited_by_count': 40}, {'year': 2014, 'cited_by_count': 10}, {'year': 2013, 'cited_by_count': 1}], 'updated_date': '2024-12-26T07:54:18.860928', 'created_date': '2016-06-24'}