Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2044072510', 'doi': 'https://doi.org/10.1198/016214503388619120', 'title': 'Estimates of Regression Coefficients Based on Lift Rank Covariance Matrix', 'display_name': 'Estimates of Regression Coefficients Based on Lift Rank Covariance Matrix', 'publication_year': 2003, 'publication_date': '2003-03-01', 'ids': {'openalex': 'https://openalex.org/W2044072510', 'doi': 'https://doi.org/10.1198/016214503388619120', 'mag': '2044072510'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1198/016214503388619120', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4394736638', 'display_name': 'Journal of the American Statistical Association', 'issn_l': '0162-1459', 'issn': ['0162-1459', '1537-274X'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5031785324', 'display_name': 'Esa Ollila', 'orcid': 'https://orcid.org/0000-0002-0898-5313'}, 'institutions': [{'id': 'https://openalex.org/I94722563', 'display_name': 'University of Jyväskylä', 'ror': 'https://ror.org/05n3dz165', 'country_code': 'FI', 'type': 'education', 'lineage': ['https://openalex.org/I94722563']}], 'countries': ['FI'], 'is_corresponding': False, 'raw_author_name': 'Esa Ollila', 'raw_affiliation_strings': ['Esa Ollila is Researcher and Visa Koivunen is Professor, Signal Processing Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. Hannu Oja is Professor, Department of Mathematics and Statistics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland. The authors express their appreciation to the referees and the associate editor for their careful reading and comments that improved the article.'], 'affiliations': [{'raw_affiliation_string': 'Esa Ollila is Researcher and Visa Koivunen is Professor, Signal Processing Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. Hannu Oja is Professor, Department of Mathematics and Statistics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland. The authors express their appreciation to the referees and the associate editor for their careful reading and comments that improved the article.', 'institution_ids': ['https://openalex.org/I94722563']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5020994740', 'display_name': 'Hannu Oja', 'orcid': 'https://orcid.org/0000-0002-4945-5976'}, 'institutions': [{'id': 'https://openalex.org/I94722563', 'display_name': 'University of Jyväskylä', 'ror': 'https://ror.org/05n3dz165', 'country_code': 'FI', 'type': 'education', 'lineage': ['https://openalex.org/I94722563']}], 'countries': ['FI'], 'is_corresponding': False, 'raw_author_name': 'Hannu Oja', 'raw_affiliation_strings': ['Esa Ollila is Researcher and Visa Koivunen is Professor, Signal Processing Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. Hannu Oja is Professor, Department of Mathematics and Statistics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland. The authors express their appreciation to the referees and the associate editor for their careful reading and comments that improved the article.'], 'affiliations': [{'raw_affiliation_string': 'Esa Ollila is Researcher and Visa Koivunen is Professor, Signal Processing Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. Hannu Oja is Professor, Department of Mathematics and Statistics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland. The authors express their appreciation to the referees and the associate editor for their careful reading and comments that improved the article.', 'institution_ids': ['https://openalex.org/I94722563']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5105267090', 'display_name': 'Visa Koivunen', 'orcid': 'https://orcid.org/0000-0003-1454-5928'}, 'institutions': [{'id': 'https://openalex.org/I94722563', 'display_name': 'University of Jyväskylä', 'ror': 'https://ror.org/05n3dz165', 'country_code': 'FI', 'type': 'education', 'lineage': ['https://openalex.org/I94722563']}], 'countries': ['FI'], 'is_corresponding': False, 'raw_author_name': 'Visa Koivunen', 'raw_affiliation_strings': ['Esa Ollila is Researcher and Visa Koivunen is Professor, Signal Processing Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. Hannu Oja is Professor, Department of Mathematics and Statistics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland. The authors express their appreciation to the referees and the associate editor for their careful reading and comments that improved the article.'], 'affiliations': [{'raw_affiliation_string': 'Esa Ollila is Researcher and Visa Koivunen is Professor, Signal Processing Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. Hannu Oja is Professor, Department of Mathematics and Statistics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland. The authors express their appreciation to the referees and the associate editor for their careful reading and comments that improved the article.', 'institution_ids': ['https://openalex.org/I94722563']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 1.086, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 35, 'citation_normalized_percentile': {'value': 0.780385, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 89, 'max': 90}, 'biblio': {'volume': '98', 'issue': '461', 'first_page': '90', 'last_page': '98'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11871', 'display_name': 'Advanced Statistical Methods and Models', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11871', 'display_name': 'Advanced Statistical Methods and Models', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10640', 'display_name': 'Spectroscopy and Chemometric Analyses', 'score': 0.9764, 'subfield': {'id': 'https://openalex.org/subfields/1602', 'display_name': 'Analytical Chemistry'}, 'field': {'id': 'https://openalex.org/fields/16', 'display_name': 'Chemistry'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T13141', 'display_name': 'Statistical Methods and Applications', 'score': 0.9733, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/lift', 'display_name': 'Lift (data mining)', 'score': 0.6317811}, {'id': 'https://openalex.org/keywords/rank', 'display_name': 'Rank (graph theory)', 'score': 0.52411497}, {'id': 'https://openalex.org/keywords/equivariant-map', 'display_name': 'Equivariant map', 'score': 0.4752293}], 'concepts': [{'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.8251405}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.66310376}, {'id': 'https://openalex.org/C139002025', 'wikidata': 'https://www.wikidata.org/wiki/Q3001212', 'display_name': 'Lift (data mining)', 'level': 2, 'score': 0.6317811}, {'id': 'https://openalex.org/C185142706', 'wikidata': 'https://www.wikidata.org/wiki/Q1134404', 'display_name': 'Covariance matrix', 'level': 2, 'score': 0.5636632}, {'id': 'https://openalex.org/C178650346', 'wikidata': 'https://www.wikidata.org/wiki/Q201984', 'display_name': 'Covariance', 'level': 2, 'score': 0.56074667}, {'id': 'https://openalex.org/C164226766', 'wikidata': 'https://www.wikidata.org/wiki/Q7293202', 'display_name': 'Rank (graph theory)', 'level': 2, 'score': 0.52411497}, {'id': 'https://openalex.org/C177384507', 'wikidata': 'https://www.wikidata.org/wiki/Q1149000', 'display_name': 'Multivariate normal distribution', 'level': 3, 'score': 0.5207208}, {'id': 'https://openalex.org/C171036898', 'wikidata': 'https://www.wikidata.org/wiki/Q256355', 'display_name': 'Equivariant map', 'level': 2, 'score': 0.4752293}, {'id': 'https://openalex.org/C180877172', 'wikidata': 'https://www.wikidata.org/wiki/Q5401390', 'display_name': 'Estimation of covariance matrices', 'level': 3, 'score': 0.4392876}, {'id': 'https://openalex.org/C161584116', 'wikidata': 'https://www.wikidata.org/wiki/Q1952580', 'display_name': 'Multivariate statistics', 'level': 2, 'score': 0.4363612}, {'id': 'https://openalex.org/C141547133', 'wikidata': 'https://www.wikidata.org/wiki/Q7291996', 'display_name': 'Random variate', 'level': 3, 'score': 0.42003867}, {'id': 'https://openalex.org/C28826006', 'wikidata': 'https://www.wikidata.org/wiki/Q33521', 'display_name': 'Applied mathematics', 'level': 1, 'score': 0.36971012}, {'id': 'https://openalex.org/C114614502', 'wikidata': 'https://www.wikidata.org/wiki/Q76592', 'display_name': 'Combinatorics', 'level': 1, 'score': 0.18989304}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.10065693}, {'id': 'https://openalex.org/C122123141', 'wikidata': 'https://www.wikidata.org/wiki/Q176623', 'display_name': 'Random variable', 'level': 2, 'score': 0.086110234}, {'id': 'https://openalex.org/C202444582', 'wikidata': 'https://www.wikidata.org/wiki/Q837863', 'display_name': 'Pure mathematics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C124101348', 'wikidata': 'https://www.wikidata.org/wiki/Q172491', 'display_name': 'Data mining', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1198/016214503388619120', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4394736638', 'display_name': 'Journal of the American Statistical Association', 'issn_l': '0162-1459', 'issn': ['0162-1459', '1537-274X'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 28, 'referenced_works': ['https://openalex.org/W102279446', 'https://openalex.org/W1556121131', 'https://openalex.org/W1966457895', 'https://openalex.org/W1969463951', 'https://openalex.org/W1972986361', 'https://openalex.org/W1978042554', 'https://openalex.org/W1981469185', 'https://openalex.org/W1981673657', 'https://openalex.org/W1984347506', 'https://openalex.org/W1989844236', 'https://openalex.org/W1995945562', 'https://openalex.org/W2006022387', 'https://openalex.org/W2006879073', 'https://openalex.org/W2012712694', 'https://openalex.org/W2019402276', 'https://openalex.org/W2030296667', 'https://openalex.org/W2056057826', 'https://openalex.org/W2062650041', 'https://openalex.org/W2068850532', 'https://openalex.org/W2079026814', 'https://openalex.org/W2081110200', 'https://openalex.org/W2105689197', 'https://openalex.org/W2325343629', 'https://openalex.org/W2342273192', 'https://openalex.org/W2796862431', 'https://openalex.org/W4232396727', 'https://openalex.org/W4236391698', 'https://openalex.org/W4251845675'], 'related_works': ['https://openalex.org/W3124236979', 'https://openalex.org/W3111417763', 'https://openalex.org/W2184922845', 'https://openalex.org/W2165410129', 'https://openalex.org/W2128521221', 'https://openalex.org/W2105221522', 'https://openalex.org/W2081012823', 'https://openalex.org/W2068445617', 'https://openalex.org/W2023475031', 'https://openalex.org/W1990761108'], 'abstract_inverted_index': {'We': [0], 'introduce': [1], 'a': [2, 104, 147], 'new': [3, 71], 'equivariant': [4, 100], 'estimation': [5], 'method': [6], 'of': [7, 10, 87, 129, 133], 'the': [8, 11, 27, 34, 41, 76, 88, 113, 124, 130, 134], 'parameters': [9], 'multivariate': [12, 114], 'regression': [13, 73, 97], 'model': [14], 'with': [15], 'q': [16, 50], 'responses': [17], 'and': [18, 53, 75, 101, 108, 146], 'p': [19, 48], 'regressors.': [20], 'The': [21, 45, 70, 95, 140], 'estimate': [22, 74, 80, 98, 136], 'matrix': [23, 31, 132], 'is': [24, 99, 109, 137, 142], 'derived': [25], 'from': [26], 'lift': [28, 35, 58], 'rank': [29, 36], 'covariance': [30], '(LRCM)': [32], 'where': [33], 'vectors': [37], 'are': [38, 60, 81], 'based': [39, 91], 'on': [40, 92], 'Oja': [42], 'criterion': [43], 'function.': [44], 'k': [46, 54, 68], '=': [47], '+': [49, 55], 'variate': [51, 57], 'ranks': [52, 59], '1': [56], 'constructed': [61], 'using': [62], 'hyperplanes': [63], '(or': [64], 'fits)': [65], 'going': [66], 'through': [67], 'observations.': [69], 'LRCM': [72, 96, 135], 'least': [77], 'squares': [78], '(LS)': [79], 'shown': [82], 'to': [83], 'be': [84], 'weighted': [85], 'sums': [86], 'elemental': [89], 'estimates': [90], 'these': [93], 'hyperplanes.': [94], 'convergent,': [102], 'has': [103], 'limiting': [105], 'multinormal': [106], 'distribution,': [107], 'highly': [110], 'efficient': [111], 'in': [112], 'normal': [115], 'case.': [116], 'For': [117], 'heavy-tailed': [118], 'distributions,': [119], 'it': [120], 'performs': [121], 'better': [122], 'than': [123], 'standard': [125], 'LS': [126], 'estimate.': [127], 'Estimation': [128], 'variance-covariance': [131], 'briefly': [138], 'discussed.': [139], 'theory': [141], 'illustrated': [143], 'by': [144], 'simulations': [145], 'real': [148], 'data': [149], 'example.': [150]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2044072510', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2018, 'cited_by_count': 16}, {'year': 2017, 'cited_by_count': 1}, {'year': 2015, 'cited_by_count': 2}, {'year': 2014, 'cited_by_count': 1}, {'year': 2012, 'cited_by_count': 2}], 'updated_date': '2024-12-11T09:49:43.443361', 'created_date': '2016-06-24'}