Title: Further Properties of Frequentist Confidence Intervals in Regression that Utilize Uncertain Prior Information
Abstract:Consider a linear regression model with n-dimensional response vector, regression parameter and independent and identically distributed errors. Suppose that the parameter of interest is where a is a s...Consider a linear regression model with n-dimensional response vector, regression parameter and independent and identically distributed errors. Suppose that the parameter of interest is where a is a specified vector. Define the parameter where c and t are specified. Also suppose that we have uncertain prior information that . Part of our evaluation of a frequentist confidence interval for is the ratio (expected length of this confidence interval)/(expected length of standard confidence interval), which we call the scaled expected length of this interval. We say that a confidence interval for utilizes this uncertain prior information if: (i) the scaled expected length of this interval is substantially less than 1 when ; (ii) the maximum value of the scaled expected length is not too much larger than 1; and (iii) this confidence interval reverts to the standard confidence interval when the data happen to strongly contradict the prior information. Kabaila and Giri (2009) present a new method for finding such a confidence interval. Let denote the least squares estimator of . Also let and . Using computations and new theoretical results, we show that the performance of this confidence interval improves as increases and decreases.Read More