Publication Information

Basic Information

Access and Citation

AI Researcher Chatbot

Get quick answers to your questions about the article from our AI researcher chatbot

Primary Location

Authors

Topics

Keywords

Related Works

Title: $Excitation of upper-hybrid waves by a thermal parametric instability
Abstract: A purely growing instability characterized by a four-wave interaction has been analysed in a uniform, magnetized plasma. Up-shifted and down-shifted upper-hybrid waves and a non-oscillatory mode can be excited by a pump wave of ordinary rather than extraordinary polarization in the case of ionospheric heating. The differential Ohmic heating force dominates over the ponderomotive force as the wave–wave coupling mechanism. The beating current at zero frequency produces a significant stabilizing effect on the excitation of short-scale modes by counterbalancing the destabilizing effect of the differential Ohmic heating. The effect of ionospheric inhomogeneity is estimated, showing a tendency to raise the thresholds of the instability. When applied to ionospheric heating experiments, the present theory can explain the excitation of field-aligned plasma lines and ionospheric irregularities with a continuous spectrum ranging from metre-scale to hundreds of metre-scale. Further, the proposed mechanism may become a competitive process to the parametric decay instability and be responsible for the overshoot phenomena of the plasma line enhancement at Arecibo.