Title: WHY THERE IS SOMETHING SO CLOSE TO NOTHING: TOWARDS A FUNDAMENTAL THEORY OF THE COSMOLOGICAL CONSTANT
Abstract:The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate...The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.Read More
Title: $WHY THERE IS SOMETHING SO CLOSE TO NOTHING: TOWARDS A FUNDAMENTAL THEORY OF THE COSMOLOGICAL CONSTANT
Abstract: The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.