Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2021490033', 'doi': 'https://doi.org/10.1162/neco_a_00466', 'title': 'A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants', 'display_name': 'A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants', 'publication_year': 2013, 'publication_date': '2013-04-23', 'ids': {'openalex': 'https://openalex.org/W2021490033', 'doi': 'https://doi.org/10.1162/neco_a_00466', 'mag': '2021490033', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/23607562'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1162/neco_a_00466', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S207023548', 'display_name': 'Neural Computation', 'issn_l': '0899-7667', 'issn': ['0899-7667', '1530-888X'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315718', 'host_organization_name': 'The MIT Press', 'host_organization_lineage': ['https://openalex.org/P4310315718'], 'host_organization_lineage_names': ['The MIT Press'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'letter', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5085287370', 'display_name': 'Faming Liang', 'orcid': 'https://orcid.org/0000-0002-1177-5501'}, 'institutions': [{'id': 'https://openalex.org/I91045830', 'display_name': 'Texas A&M University', 'ror': 'https://ror.org/01f5ytq51', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I91045830']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Faming Liang', 'raw_affiliation_strings': ['Department of Statistics, Texas A&M University, College Station, TX 77843, U.S.A.'], 'affiliations': [{'raw_affiliation_string': 'Department of Statistics, Texas A&M University, College Station, TX 77843, U.S.A.', 'institution_ids': ['https://openalex.org/I91045830']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5043640771', 'display_name': 'Ick Hoon Jin', 'orcid': 'https://orcid.org/0000-0003-0647-5704'}, 'institutions': [{'id': 'https://openalex.org/I1343551460', 'display_name': 'The University of Texas MD Anderson Cancer Center', 'ror': 'https://ror.org/04twxam07', 'country_code': 'US', 'type': 'healthcare', 'lineage': ['https://openalex.org/I1343551460']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Ick-Hoon Jin', 'raw_affiliation_strings': ['Department of Biostatistics, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, U.S.A.'], 'affiliations': [{'raw_affiliation_string': 'Department of Biostatistics, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, U.S.A.', 'institution_ids': ['https://openalex.org/I1343551460']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 23, 'citation_normalized_percentile': {'value': 0.986667, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 91, 'max': 92}, 'biblio': {'volume': '25', 'issue': '8', 'first_page': '2199', 'last_page': '2234'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11901', 'display_name': 'Bayesian Methods and Mixture Models', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10243', 'display_name': 'Statistical Methods and Bayesian Inference', 'score': 0.9992, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/metropolis–hastings-algorithm', 'display_name': 'Metropolis–Hastings algorithm', 'score': 0.7450578}, {'id': 'https://openalex.org/keywords/rejection-sampling', 'display_name': 'Rejection sampling', 'score': 0.7420305}, {'id': 'https://openalex.org/keywords/monte-carlo-integration', 'display_name': 'Monte Carlo integration', 'score': 0.50490576}, {'id': 'https://openalex.org/keywords/monte-carlo-algorithm', 'display_name': 'Monte Carlo algorithm', 'score': 0.43295872}, {'id': 'https://openalex.org/keywords/gibbs-sampling', 'display_name': 'Gibbs sampling', 'score': 0.41576868}], 'concepts': [{'id': 'https://openalex.org/C111350023', 'wikidata': 'https://www.wikidata.org/wiki/Q1191869', 'display_name': 'Markov chain Monte Carlo', 'level': 3, 'score': 0.81709623}, {'id': 'https://openalex.org/C204693719', 'wikidata': 'https://www.wikidata.org/wiki/Q910810', 'display_name': 'Metropolis–Hastings algorithm', 'level': 4, 'score': 0.7450578}, {'id': 'https://openalex.org/C187192777', 'wikidata': 'https://www.wikidata.org/wiki/Q381699', 'display_name': 'Rejection sampling', 'level': 5, 'score': 0.7420305}, {'id': 'https://openalex.org/C19499675', 'wikidata': 'https://www.wikidata.org/wiki/Q232207', 'display_name': 'Monte Carlo method', 'level': 2, 'score': 0.69833547}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.63091344}, {'id': 'https://openalex.org/C13153151', 'wikidata': 'https://www.wikidata.org/wiki/Q1639846', 'display_name': 'Hybrid Monte Carlo', 'level': 4, 'score': 0.586373}, {'id': 'https://openalex.org/C132725507', 'wikidata': 'https://www.wikidata.org/wiki/Q39879', 'display_name': 'Monte Carlo integration', 'level': 5, 'score': 0.50490576}, {'id': 'https://openalex.org/C160234255', 'wikidata': 'https://www.wikidata.org/wiki/Q812535', 'display_name': 'Bayesian inference', 'level': 3, 'score': 0.46873766}, {'id': 'https://openalex.org/C204493344', 'wikidata': 'https://www.wikidata.org/wiki/Q6904698', 'display_name': 'Monte Carlo method in statistical physics', 'level': 5, 'score': 0.44285062}, {'id': 'https://openalex.org/C170593435', 'wikidata': 'https://www.wikidata.org/wiki/Q4128565', 'display_name': 'Slice sampling', 'level': 4, 'score': 0.4363042}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.43520847}, {'id': 'https://openalex.org/C15482360', 'wikidata': 'https://www.wikidata.org/wiki/Q15238499', 'display_name': 'Monte Carlo algorithm', 'level': 3, 'score': 0.43295872}, {'id': 'https://openalex.org/C140779682', 'wikidata': 'https://www.wikidata.org/wiki/Q210868', 'display_name': 'Sampling (signal processing)', 'level': 3, 'score': 0.427639}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.42650867}, {'id': 'https://openalex.org/C158424031', 'wikidata': 'https://www.wikidata.org/wiki/Q1191905', 'display_name': 'Gibbs sampling', 'level': 3, 'score': 0.41576868}, {'id': 'https://openalex.org/C52740198', 'wikidata': 'https://www.wikidata.org/wiki/Q1539564', 'display_name': 'Importance sampling', 'level': 3, 'score': 0.41171777}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.2893772}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.22288296}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.17858374}, {'id': 'https://openalex.org/C106131492', 'wikidata': 'https://www.wikidata.org/wiki/Q3072260', 'display_name': 'Filter (signal processing)', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.0}], 'mesh': [{'descriptor_ui': 'D000465', 'descriptor_name': 'Algorithms', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D001185', 'descriptor_name': 'Artificial Intelligence', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D001330', 'descriptor_name': 'Electronic Data Processing', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D008962', 'descriptor_name': 'Models, Theoretical', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D009010', 'descriptor_name': 'Monte Carlo Method', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D001499', 'descriptor_name': 'Bayes Theorem', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D003198', 'descriptor_name': 'Computer Simulation', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006801', 'descriptor_name': 'Humans', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D009369', 'descriptor_name': 'Neoplasms', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D009369', 'descriptor_name': 'Neoplasms', 'qualifier_ui': 'Q000401', 'qualifier_name': 'mortality', 'is_major_topic': False}, {'descriptor_ui': 'D012944', 'descriptor_name': 'Social Support', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1162/neco_a_00466', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S207023548', 'display_name': 'Neural Computation', 'issn_l': '0899-7667', 'issn': ['0899-7667', '1530-888X'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315718', 'host_organization_name': 'The MIT Press', 'host_organization_lineage': ['https://openalex.org/P4310315718'], 'host_organization_lineage_names': ['The MIT Press'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/23607562', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 58, 'referenced_works': ['https://openalex.org/W107938046', 'https://openalex.org/W143236119', 'https://openalex.org/W1520053542', 'https://openalex.org/W1533758202', 'https://openalex.org/W1550160156', 'https://openalex.org/W1554338108', 'https://openalex.org/W156090406', 'https://openalex.org/W1565240145', 'https://openalex.org/W1565709818', 'https://openalex.org/W1569980211', 'https://openalex.org/W1573937741', 'https://openalex.org/W1658203383', 'https://openalex.org/W1822626079', 'https://openalex.org/W1830883013', 'https://openalex.org/W1967573895', 'https://openalex.org/W1984048068', 'https://openalex.org/W1993177346', 'https://openalex.org/W1995945562', 'https://openalex.org/W1999160566', 'https://openalex.org/W2001855864', 'https://openalex.org/W2005991795', 'https://openalex.org/W2013164703', 'https://openalex.org/W2017265378', 'https://openalex.org/W2033900415', 'https://openalex.org/W2049633694', 'https://openalex.org/W2054287017', 'https://openalex.org/W2056990430', 'https://openalex.org/W2064765262', 'https://openalex.org/W2067761593', 'https://openalex.org/W2069412834', 'https://openalex.org/W2072634211', 'https://openalex.org/W2091860746', 'https://openalex.org/W2096141816', 'https://openalex.org/W2097175338', 'https://openalex.org/W2098956417', 'https://openalex.org/W2114220616', 'https://openalex.org/W2124612503', 'https://openalex.org/W2125280835', 'https://openalex.org/W2136676173', 'https://openalex.org/W2136796925', 'https://openalex.org/W2145067884', 'https://openalex.org/W2145622908', 'https://openalex.org/W2148534890', 'https://openalex.org/W2155910443', 'https://openalex.org/W2159009490', 'https://openalex.org/W2160268549', 'https://openalex.org/W2169043804', 'https://openalex.org/W2488413956', 'https://openalex.org/W2574495021', 'https://openalex.org/W2588971764', 'https://openalex.org/W3100622648', 'https://openalex.org/W3106889297', 'https://openalex.org/W4234057457', 'https://openalex.org/W4245883374', 'https://openalex.org/W4253069708', 'https://openalex.org/W649146021', 'https://openalex.org/W78804727', 'https://openalex.org/W81435805'], 'related_works': ['https://openalex.org/W4295750535', 'https://openalex.org/W4246060305', 'https://openalex.org/W3097509027', 'https://openalex.org/W2539839227', 'https://openalex.org/W2364295240', 'https://openalex.org/W2021490033', 'https://openalex.org/W1964820882', 'https://openalex.org/W1593554773', 'https://openalex.org/W13281851', 'https://openalex.org/W105676162'], 'abstract_inverted_index': {'Simulating': [0], 'from': [1, 155], 'distributions': [2], 'with': [3, 80, 158], 'intractable': [4, 159], 'normalizing': [5, 49], 'constants': [6], 'has': [7], 'been': [8], 'a': [9, 20, 37, 53, 156], 'long-standing': [10], 'problem': [11], 'in': [12, 57, 64], 'machine': [13], 'learning.': [14], 'In': [15], 'this': [16, 31], 'letter,': [17, 66], 'we': [18], 'propose': [19], 'new': [21], 'algorithm,': [22, 28], 'the': [23, 42, 47, 65, 68, 101, 106, 110], 'Monte': [24, 38, 54, 95], 'Carlo': [25, 39, 55, 96], 'Metropolis-Hastings': [26, 43], '(MCMH)': [27], 'for': [29, 112, 124, 144], 'tackling': [30], 'problem.': [32], 'The': [33, 75, 134], 'MCMH': [34, 76, 107, 135], 'algorithm': [35, 77, 108, 136], 'is': [36, 78, 128], 'version': [40], 'of': [41], 'algorithm.': [44], 'It': [45], 'replaces': [46], 'unknown': [48], 'constant': [50], 'ratio': [51], 'by': [52], 'estimate': [56], 'simulations,': [58], 'while': [59], 'still': [60], 'converges,': [61], 'as': [62, 100], 'shown': [63], 'to': [67, 120, 141], 'desired': [69], 'target': [70], 'distribution': [71, 157], 'under': [72], 'mild': [73], 'conditions.': [74], 'illustrated': [79], 'spatial': [81], 'autologistic': [82], 'models': [83, 123, 147], 'and': [84, 103, 115, 148], 'exponential': [85], 'random': [86, 145], 'graph': [87], 'models.': [88], 'Unlike': [89], 'other': [90], 'auxiliary': [91], 'variable': [92], 'Markov': [93], 'chain': [94], '(MCMC)': [97], 'algorithms,': [98, 105], 'such': [99], 'Møller': [102], 'exchange': [104], 'avoids': [109], 'requirement': [111], 'perfect': [113, 126], 'sampling,': [114], 'thus': [116], 'can': [117, 137], 'be': [118, 139], 'applied': [119, 140], 'many': [121], 'statistical': [122], 'which': [125], 'sampling': [127], 'not': [129], 'available': [130], 'or': [131], 'very': [132], 'expensive.': [133], 'also': [138], 'Bayesian': [142], 'inference': [143], 'effect': [146], 'missing': [149], 'data': [150], 'problems': [151], 'that': [152], 'involve': [153], 'simulations': [154], 'integrals.': [160]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2021490033', 'counts_by_year': [{'year': 2024, 'cited_by_count': 2}, {'year': 2023, 'cited_by_count': 4}, {'year': 2022, 'cited_by_count': 1}, {'year': 2021, 'cited_by_count': 1}, {'year': 2020, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 2}, {'year': 2018, 'cited_by_count': 2}, {'year': 2017, 'cited_by_count': 1}, {'year': 2016, 'cited_by_count': 1}, {'year': 2015, 'cited_by_count': 2}, {'year': 2014, 'cited_by_count': 3}, {'year': 2013, 'cited_by_count': 2}, {'year': 2012, 'cited_by_count': 1}], 'updated_date': '2024-12-13T10:47:03.513998', 'created_date': '2016-06-24'}