Title: The history of solid-propellant rocketry - What we do and do not know
Abstract:Contributions to the evolution of solid-propellant rocketry have come from a variety of sources. World War II research on large solids enabled one company to capitalize on work in the area of castable...Contributions to the evolution of solid-propellant rocketry have come from a variety of sources. World War II research on large solids enabled one company to capitalize on work in the area of castable double-base propellants. Separate development of castable composite propellants led to production of Polaris and Minuteman powerplants. Pivotal to the development of these missiles were Edward Hall's advocacy of the Minuteman missile within the Air Force and contract funding to resolve problems. The discovery that adding large amounts of aluminum significantly increased the specific impulse of a castable composite propellant further aided large-missile technology. These separate lines of research led to the development of large solid-propellant motors and boosters. Many more discoveries went into the development of large solid-propellant motors. Ammonium perchlorate replaced potassium perchlorate as an oxidizer in the late 1940's, and binders were developed. Discoveries important in the evolution of large solid-propellant motors appear to have resulted from innovators' education and skills, an exposure to contemporary problems, an awareness of theory but a willingness not to let it dictate empirical investigations, and proper empirical techniques. Other important contributions are the adequate funding and exchange of information. However, many questions remain about these and other innovations.Read More
Publication Year: 1999
Publication Date: 1999-06-20
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 52
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot