Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2012384441', 'doi': 'https://doi.org/10.48550/arxiv.1202.3708', 'title': 'Smoothing Proximal Gradient Method for General Structured Sparse Learning', 'display_name': 'Smoothing Proximal Gradient Method for General Structured Sparse Learning', 'publication_year': 2012, 'publication_date': '2012-01-01', 'ids': {'openalex': 'https://openalex.org/W2012384441', 'doi': 'https://doi.org/10.48550/arxiv.1202.3708', 'mag': '2012384441'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1202.3708', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'posted-content', 'indexed_in': ['datacite'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/abs/1202.3708', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100329996', 'display_name': 'Xi Chen', 'orcid': 'https://orcid.org/0000-0002-8911-4172'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Xi Chen', 'raw_affiliation_strings': ['School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA'], 'affiliations': [{'raw_affiliation_string': 'School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5090417160', 'display_name': 'Qihang Lin', 'orcid': 'https://orcid.org/0000-0003-2943-3267'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Qihang Lin', 'raw_affiliation_strings': ['Tepper School of Business, Carnegie Mellon University, Pittsburgh PA, .'], 'affiliations': [{'raw_affiliation_string': 'Tepper School of Business, Carnegie Mellon University, Pittsburgh PA, .', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100417272', 'display_name': 'Se Young Kim', 'orcid': 'https://orcid.org/0000-0001-9188-868X'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Seyoung Kim', 'raw_affiliation_strings': ['School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA'], 'affiliations': [{'raw_affiliation_string': 'School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5109861718', 'display_name': 'Jaime Carbonell', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Jaime G. Carbonell', 'raw_affiliation_strings': ['School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA'], 'affiliations': [{'raw_affiliation_string': 'School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5009547049', 'display_name': 'Eric P. Xing', 'orcid': 'https://orcid.org/0009-0005-9158-4201'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Eric P. Xing', 'raw_affiliation_strings': ['School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA'], 'affiliations': [{'raw_affiliation_string': 'School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA', 'institution_ids': ['https://openalex.org/I74973139']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': False, 'cited_by_count': 83, 'citation_normalized_percentile': {'value': 0.952004, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 97, 'max': 98}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11612', 'display_name': 'Stochastic Gradient Optimization Techniques', 'score': 0.9889, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11205', 'display_name': 'Numerical methods in inverse problems', 'score': 0.9835, 'subfield': {'id': 'https://openalex.org/subfields/2610', 'display_name': 'Mathematical Physics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/subgradient-method', 'display_name': 'Subgradient method', 'score': 0.8418193}, {'id': 'https://openalex.org/keywords/smoothing', 'display_name': 'Smoothing', 'score': 0.769639}, {'id': 'https://openalex.org/keywords/proximal-gradient-methods', 'display_name': 'Proximal Gradient Methods', 'score': 0.5652905}, {'id': 'https://openalex.org/keywords/lasso', 'display_name': 'Lasso', 'score': 0.46177682}, {'id': 'https://openalex.org/keywords/interior-point-method', 'display_name': 'Interior point method', 'score': 0.44289604}, {'id': 'https://openalex.org/keywords/penalty-method', 'display_name': 'Penalty Method', 'score': 0.43254226}, {'id': 'https://openalex.org/keywords/interpretability', 'display_name': 'Interpretability', 'score': 0.42067978}], 'concepts': [{'id': 'https://openalex.org/C158968445', 'wikidata': 'https://www.wikidata.org/wiki/Q7631150', 'display_name': 'Subgradient method', 'level': 2, 'score': 0.8418193}, {'id': 'https://openalex.org/C3770464', 'wikidata': 'https://www.wikidata.org/wiki/Q775963', 'display_name': 'Smoothing', 'level': 2, 'score': 0.769639}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.5941861}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.5829525}, {'id': 'https://openalex.org/C10494615', 'wikidata': 'https://www.wikidata.org/wiki/Q17086765', 'display_name': 'Proximal Gradient Methods', 'level': 4, 'score': 0.5652905}, {'id': 'https://openalex.org/C48044578', 'wikidata': 'https://www.wikidata.org/wiki/Q727490', 'display_name': 'Scalability', 'level': 2, 'score': 0.5634448}, {'id': 'https://openalex.org/C37616216', 'wikidata': 'https://www.wikidata.org/wiki/Q3218363', 'display_name': 'Lasso (programming language)', 'level': 2, 'score': 0.46177682}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.44837698}, {'id': 'https://openalex.org/C155253501', 'wikidata': 'https://www.wikidata.org/wiki/Q461992', 'display_name': 'Interior point method', 'level': 2, 'score': 0.44289604}, {'id': 'https://openalex.org/C57869625', 'wikidata': 'https://www.wikidata.org/wiki/Q1783502', 'display_name': 'Rate of convergence', 'level': 3, 'score': 0.43690404}, {'id': 'https://openalex.org/C2777303404', 'wikidata': 'https://www.wikidata.org/wiki/Q759757', 'display_name': 'Convergence (economics)', 'level': 2, 'score': 0.4340965}, {'id': 'https://openalex.org/C6180225', 'wikidata': 'https://www.wikidata.org/wiki/Q3411771', 'display_name': 'Penalty method', 'level': 2, 'score': 0.43254226}, {'id': 'https://openalex.org/C2781067378', 'wikidata': 'https://www.wikidata.org/wiki/Q17027399', 'display_name': 'Interpretability', 'level': 2, 'score': 0.42067978}, {'id': 'https://openalex.org/C157972887', 'wikidata': 'https://www.wikidata.org/wiki/Q463359', 'display_name': 'Convex optimization', 'level': 3, 'score': 0.41837084}, {'id': 'https://openalex.org/C112680207', 'wikidata': 'https://www.wikidata.org/wiki/Q714886', 'display_name': 'Regular polygon', 'level': 2, 'score': 0.3878047}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.28872517}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.28675777}, {'id': 'https://openalex.org/C153258448', 'wikidata': 'https://www.wikidata.org/wiki/Q1199743', 'display_name': 'Gradient descent', 'level': 3, 'score': 0.19134256}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.11583221}, {'id': 'https://openalex.org/C26517878', 'wikidata': 'https://www.wikidata.org/wiki/Q228039', 'display_name': 'Key (lock)', 'level': 2, 'score': 0.09346026}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C38652104', 'wikidata': 'https://www.wikidata.org/wiki/Q3510521', 'display_name': 'Computer security', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C77088390', 'wikidata': 'https://www.wikidata.org/wiki/Q8513', 'display_name': 'Database', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C136764020', 'wikidata': 'https://www.wikidata.org/wiki/Q466', 'display_name': 'World Wide Web', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C50522688', 'wikidata': 'https://www.wikidata.org/wiki/Q189833', 'display_name': 'Economic growth', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1202.3708', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://api.datacite.org/dois/10.48550/arxiv.1202.3708', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4393179698', 'display_name': 'DataCite API', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I4210145204', 'host_organization_name': 'DataCite', 'host_organization_lineage': ['https://openalex.org/I4210145204'], 'host_organization_lineage_names': ['DataCite'], 'type': 'metadata'}, 'license': None, 'license_id': None, 'version': None}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1202.3708', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'score': 0.75, 'id': 'https://metadata.un.org/sdg/16', 'display_name': 'Peace, justice, and strong institutions'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 23, 'referenced_works': ['https://openalex.org/W1497745584', 'https://openalex.org/W1871180460', 'https://openalex.org/W1994309289', 'https://openalex.org/W2042860556', 'https://openalex.org/W2056636001', 'https://openalex.org/W2065180801', 'https://openalex.org/W2066459185', 'https://openalex.org/W2100556411', 'https://openalex.org/W2101594602', 'https://openalex.org/W2102241087', 'https://openalex.org/W2107838694', 'https://openalex.org/W2109907994', 'https://openalex.org/W2135046866', 'https://openalex.org/W2138019504', 'https://openalex.org/W2140514146', 'https://openalex.org/W2146482778', 'https://openalex.org/W2158497838', 'https://openalex.org/W2164301055', 'https://openalex.org/W2167732364', 'https://openalex.org/W2798766386', 'https://openalex.org/W2951862640', 'https://openalex.org/W2952402222', 'https://openalex.org/W33214042'], 'related_works': ['https://openalex.org/W4385489628', 'https://openalex.org/W4297153560', 'https://openalex.org/W3122824141', 'https://openalex.org/W2964186284', 'https://openalex.org/W2905950575', 'https://openalex.org/W2804400349', 'https://openalex.org/W2778996617', 'https://openalex.org/W2073750241', 'https://openalex.org/W2012893123', 'https://openalex.org/W1592481208'], 'abstract_inverted_index': {'We': [0, 26], 'study': [1], 'the': [2, 46, 91, 126, 138, 150, 155], 'problem': [3], 'of': [4, 32, 58, 105, 117, 154], 'learning': [5], 'high': [6], 'dimensional': [7], 'regression': [8, 94], 'models': [9], 'regularized': [10], 'by': [11], 'a': [12, 71, 79, 97, 102, 113, 121], 'structured-sparsity-inducing': [13, 106], 'penalty': [14], 'that': [15], 'encodes': [16], 'prior': [17], 'structural': [18], 'information': [19], 'on': [20, 45, 112], 'either': [21], 'input': [22], 'or': [23], 'output': [24], 'sides.': [25], 'consider': [27], 'two': [28], 'widely': [29, 140], 'adopted': [30], 'types': [31, 57], 'such': [33], 'penalties': [34], 'as': [35], 'our': [36], 'motivating': [37], 'examples:': [38], '1)': [39], 'overlapping': [40], 'group': [41], 'lasso': [42], 'penalty,': [43, 49], 'based': [44, 111], 'l1/l2': [47], 'mixed-norm': [48], 'and': [50, 101, 132, 152], '2)': [51], 'graph-guided': [52], 'fusion': [53], 'penalty.': [54], 'For': [55], 'both': [56], 'penalties,': [59], 'due': [60], 'to': [61, 148], 'their': [62], 'non-separability,': [63], 'developing': [64], 'an': [65], 'efficient': [66], 'optimization': [67, 81], 'method': [68], 'has': [69], 'remained': [70], 'challenging': [72], 'problem.': [73], 'In': [74], 'this': [75], 'paper,': [76], 'we': [77], 'propose': [78], 'general': [80, 114], 'approach,': [82], 'called': [83], 'smoothing': [84, 115], 'proximal': [85], 'gradient': [86], 'method,': [87, 129, 131], 'which': [88], 'can': [89], 'solve': [90], 'structured': [92], 'sparse': [93], 'problems': [95], 'with': [96], 'smooth': [98], 'convex': [99], 'loss': [100], 'wide': [103], 'spectrum': [104], 'penalties.': [107], 'Our': [108], 'approach': [109], 'is': [110, 133], 'technique': [116], 'Nesterov.': [118], 'It': [119], 'achieves': [120], 'convergence': [122], 'rate': [123], 'faster': [124], 'than': [125, 137], 'standard': [127], 'first-order': [128], 'subgradient': [130], 'much': [134], 'more': [135], 'scalable': [136], 'most': [139], 'used': [141], 'interior-point': [142], 'method.': [143, 157], 'Numerical': [144], 'results': [145], 'are': [146], 'reported': [147], 'demonstrate': [149], 'efficiency': [151], 'scalability': [153], 'proposed': [156]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2012384441', 'counts_by_year': [{'year': 2023, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 1}, {'year': 2018, 'cited_by_count': 2}, {'year': 2017, 'cited_by_count': 6}, {'year': 2016, 'cited_by_count': 7}, {'year': 2015, 'cited_by_count': 15}, {'year': 2014, 'cited_by_count': 14}, {'year': 2013, 'cited_by_count': 18}, {'year': 2012, 'cited_by_count': 16}], 'updated_date': '2024-12-11T11:53:47.325346', 'created_date': '2016-06-24'}