Title: tt* geometry, Frobenius manifolds, their connections, and the construction for singularities
Abstract:The base space of a semiuniversal unfolding of a hypersurface singularity carries a rich geometry. By work of K. Saito and M. Saito is can be equipped with the structure of a Frobenius manifold. By wo...The base space of a semiuniversal unfolding of a hypersurface singularity carries a rich geometry. By work of K. Saito and M. Saito is can be equipped with the structure of a Frobenius manifold. By work of Cecotti and Vafa it can be equipped with tt* geometry if the singularity is quasihomogeneous. tt* geometry generalizes the notion of variation of Hodge structures.
In the second part of this paper (chapters 6-8) Frobenius manifolds and tt* geometry are constructed for any hypersurface singularity, using essentially oscillating integrals; and the intimate relationship between polarized mixed Hodge structures and this tt* geometry is worked out.
In the first part (chapters 2-5) tt* geometry and Frobenius manifolds and their relations are studied in general. To both of them flat connections with poles are associated, with distinctive common and different properties. A frame for a simultaneous construction is given.Read More