Title: SCALES & SIGNATURES OF EPISODIC SAND BYPASSING AT A TIDE-DOMINATED INLET — FRIPP INLET, SOUTH CAROLINA
Abstract:This paper provides a case example of meso-scale sand circulation and volumes in a tide-dominated inlet (Fripp Inlet, South Carolina, USA) and the adjacent barrier island. Episodic bypassing is the do...This paper provides a case example of meso-scale sand circulation and volumes in a tide-dominated inlet (Fripp Inlet, South Carolina, USA) and the adjacent barrier island. Episodic bypassing is the dominant process controlling shoreline change in this area (Gaudiano & Kana 2001). The scale of bypassing in this case has proven to be more than adequate to restore a highly eroding armored beach along Fripp Island. Upward of 2.7 million cubic meters (m³) shifted from the ebb-tidal delta of Fripp Inlet to a central oceanfront area of Fripp Island between 1989 and 2012. This volume, representing roughly 10 percent of the ebb-tidal delta volume, provided natural nourishment equivalent to nearly 600 cubic meters per meter of shoreline (m³/m) along the nearly 5-kilometer (km) long barrier island. The volume density varied greatly with some beach segments widening by more than 500 m. Prior to the bypassing events, there was no beach at high tide along most of the island. The paper discusses the possible trigger for recent bypassing events and documents changes in Fripp Inlet. Channel rotation into a seawall, southerly deflection of the ebb-delta centroid, and large inputs of sand from the adjacent barrier island appear to have produced conditions promoting large releases of sand to Fripp Island. While the influx of sand has restored much of the oceanfront, full restoration of a sandy beach along the inlet margin will require a channel avulsion or realignment such that the principal erosion-causing process-ebb jet in the main channel-no longer encroaches on the seawall. A channel realignment plan developed by the authors will require upward of 1.2 million m³ of dredging under present conditions but possibly less volume in the near future because of the formation of an incipient new channel.Read More