Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W1989060270', 'doi': 'https://doi.org/10.1214/11-aoas514', 'title': 'Smoothing proximal gradient method for general structured sparse regression', 'display_name': 'Smoothing proximal gradient method for general structured sparse regression', 'publication_year': 2012, 'publication_date': '2012-06-01', 'ids': {'openalex': 'https://openalex.org/W1989060270', 'doi': 'https://doi.org/10.1214/11-aoas514', 'mag': '1989060270'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1214/11-aoas514', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S112778392', 'display_name': 'The Annals of Applied Statistics', 'issn_l': '1932-6157', 'issn': ['1932-6157', '1941-7330'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319881', 'host_organization_name': 'Institute of Mathematical Statistics', 'host_organization_lineage': ['https://openalex.org/P4310319881'], 'host_organization_lineage_names': ['Institute of Mathematical Statistics'], 'type': 'journal'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['arxiv', 'crossref', 'datacite'], 'open_access': {'is_oa': True, 'oa_status': 'hybrid', 'oa_url': 'https://doi.org/10.1214/11-aoas514', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100329854', 'display_name': 'Xi Chen', 'orcid': 'https://orcid.org/0000-0001-7099-7318'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Xi Chen', 'raw_affiliation_strings': ['Carnegie Mellon University'], 'affiliations': [{'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5090417160', 'display_name': 'Qihang Lin', 'orcid': 'https://orcid.org/0000-0003-2943-3267'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Qihang Lin', 'raw_affiliation_strings': ['Carnegie Mellon University'], 'affiliations': [{'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100417272', 'display_name': 'Se Young Kim', 'orcid': 'https://orcid.org/0000-0001-9188-868X'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Seyoung Kim', 'raw_affiliation_strings': ['Carnegie Mellon University'], 'affiliations': [{'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5103868745', 'display_name': 'Jaime G. Carbonell', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Jaime G. Carbonell', 'raw_affiliation_strings': ['Carnegie Mellon University'], 'affiliations': [{'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5009547049', 'display_name': 'Eric P. Xing', 'orcid': 'https://orcid.org/0009-0005-9158-4201'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Eric P. Xing', 'raw_affiliation_strings': ['Carnegie Mellon University'], 'affiliations': [{'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 24.864, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 197, 'citation_normalized_percentile': {'value': 0.999932, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 98, 'max': 99}, 'biblio': {'volume': '6', 'issue': '2', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 0.9872, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10500', 'display_name': 'Sparse and Compressive Sensing Techniques', 'score': 0.9872, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10136', 'display_name': 'Statistical Methods and Inference', 'score': 0.9588, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10308', 'display_name': 'Systemic Lupus Erythematosus Research', 'score': 0.9416, 'subfield': {'id': 'https://openalex.org/subfields/2745', 'display_name': 'Rheumatology'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/subgradient-method', 'display_name': 'Subgradient method', 'score': 0.87632024}, {'id': 'https://openalex.org/keywords/smoothing', 'display_name': 'Smoothing', 'score': 0.7569369}, {'id': 'https://openalex.org/keywords/proximal-gradient-methods', 'display_name': 'Proximal Gradient Methods', 'score': 0.6811098}, {'id': 'https://openalex.org/keywords/lasso', 'display_name': 'Lasso', 'score': 0.65002024}, {'id': 'https://openalex.org/keywords/penalty-method', 'display_name': 'Penalty Method', 'score': 0.6090547}, {'id': 'https://openalex.org/keywords/interpretability', 'display_name': 'Interpretability', 'score': 0.54298234}], 'concepts': [{'id': 'https://openalex.org/C158968445', 'wikidata': 'https://www.wikidata.org/wiki/Q7631150', 'display_name': 'Subgradient method', 'level': 2, 'score': 0.87632024}, {'id': 'https://openalex.org/C3770464', 'wikidata': 'https://www.wikidata.org/wiki/Q775963', 'display_name': 'Smoothing', 'level': 2, 'score': 0.7569369}, {'id': 'https://openalex.org/C10494615', 'wikidata': 'https://www.wikidata.org/wiki/Q17086765', 'display_name': 'Proximal Gradient Methods', 'level': 4, 'score': 0.6811098}, {'id': 'https://openalex.org/C37616216', 'wikidata': 'https://www.wikidata.org/wiki/Q3218363', 'display_name': 'Lasso (programming language)', 'level': 2, 'score': 0.65002024}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.6327}, {'id': 'https://openalex.org/C6180225', 'wikidata': 'https://www.wikidata.org/wiki/Q3411771', 'display_name': 'Penalty method', 'level': 2, 'score': 0.6090547}, {'id': 'https://openalex.org/C2781067378', 'wikidata': 'https://www.wikidata.org/wiki/Q17027399', 'display_name': 'Interpretability', 'level': 2, 'score': 0.54298234}, {'id': 'https://openalex.org/C48044578', 'wikidata': 'https://www.wikidata.org/wiki/Q727490', 'display_name': 'Scalability', 'level': 2, 'score': 0.50674325}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.50206685}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.48664436}, {'id': 'https://openalex.org/C83546350', 'wikidata': 'https://www.wikidata.org/wiki/Q1139051', 'display_name': 'Regression', 'level': 2, 'score': 0.46437708}, {'id': 'https://openalex.org/C2777303404', 'wikidata': 'https://www.wikidata.org/wiki/Q759757', 'display_name': 'Convergence (economics)', 'level': 2, 'score': 0.45508605}, {'id': 'https://openalex.org/C57869625', 'wikidata': 'https://www.wikidata.org/wiki/Q1783502', 'display_name': 'Rate of convergence', 'level': 3, 'score': 0.42364547}, {'id': 'https://openalex.org/C157972887', 'wikidata': 'https://www.wikidata.org/wiki/Q463359', 'display_name': 'Convex optimization', 'level': 3, 'score': 0.40826547}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.3711046}, {'id': 'https://openalex.org/C112680207', 'wikidata': 'https://www.wikidata.org/wiki/Q714886', 'display_name': 'Regular polygon', 'level': 2, 'score': 0.36312073}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.20131841}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.09062052}, {'id': 'https://openalex.org/C26517878', 'wikidata': 'https://www.wikidata.org/wiki/Q228039', 'display_name': 'Key (lock)', 'level': 2, 'score': 0.08313507}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C38652104', 'wikidata': 'https://www.wikidata.org/wiki/Q3510521', 'display_name': 'Computer security', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C77088390', 'wikidata': 'https://www.wikidata.org/wiki/Q8513', 'display_name': 'Database', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C136764020', 'wikidata': 'https://www.wikidata.org/wiki/Q466', 'display_name': 'World Wide Web', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C50522688', 'wikidata': 'https://www.wikidata.org/wiki/Q189833', 'display_name': 'Economic growth', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 6, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1214/11-aoas514', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S112778392', 'display_name': 'The Annals of Applied Statistics', 'issn_l': '1932-6157', 'issn': ['1932-6157', '1941-7330'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319881', 'host_organization_name': 'Institute of Mathematical Statistics', 'host_organization_lineage': ['https://openalex.org/P4310319881'], 'host_organization_lineage_names': ['Institute of Mathematical Statistics'], 'type': 'journal'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'http://arxiv.org/abs/1005.4717', 'pdf_url': 'http://arxiv.org/pdf/1005.4717', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://figshare.com/articles/journal_contribution/Smoothing_proximal_gradient_method_for_general_structured_sparse_regression/6476333', 'pdf_url': 'https://figshare.com/articles/journal_contribution/Smoothing_proximal_gradient_method_for_general_structured_sparse_regression/6476333/1/files/11907743.pdf', 'source': {'id': 'https://openalex.org/S4306402621', 'display_name': 'INDIGO (University of Illinois at Chicago)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I39422238', 'host_organization_name': 'University of Illinois Chicago', 'host_organization_lineage': ['https://openalex.org/I39422238'], 'host_organization_lineage_names': ['University of Illinois Chicago'], 'type': 'repository'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1005.4717', 'pdf_url': 'https://arxiv.org/pdf/1005.4717', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'http://projecteuclid.org/euclid.aoas/1339419614', 'pdf_url': 'https://projecteuclid.org/journals/annals-of-applied-statistics/volume-6/issue-2/Smoothing-proximal-gradient-method-for-general-structured-sparse-regression/10.1214/11-AOAS514.pdf', 'source': {'id': 'https://openalex.org/S4306400787', 'display_name': 'Project Euclid (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://api.datacite.org/dois/10.48550/arxiv.1005.4717', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4393179698', 'display_name': 'DataCite API', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I4210145204', 'host_organization_name': 'DataCite', 'host_organization_lineage': ['https://openalex.org/I4210145204'], 'host_organization_lineage_names': ['DataCite'], 'type': 'metadata'}, 'license': None, 'license_id': None, 'version': None}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1214/11-aoas514', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S112778392', 'display_name': 'The Annals of Applied Statistics', 'issn_l': '1932-6157', 'issn': ['1932-6157', '1941-7330'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319881', 'host_organization_name': 'Institute of Mathematical Statistics', 'host_organization_lineage': ['https://openalex.org/P4310319881'], 'host_organization_lineage_names': ['Institute of Mathematical Statistics'], 'type': 'journal'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/16', 'score': 0.77, 'display_name': 'Peace, justice, and strong institutions'}], 'grants': [], 'datasets': [], 'versions': ['https://openalex.org/W1989060270', 'https://openalex.org/W3101782091'], 'referenced_works_count': 61, 'referenced_works': ['https://openalex.org/W1497745584', 'https://openalex.org/W1564354676', 'https://openalex.org/W1646506067', 'https://openalex.org/W1871180460', 'https://openalex.org/W1967073510', 'https://openalex.org/W1970554427', 'https://openalex.org/W1992688650', 'https://openalex.org/W1994309289', 'https://openalex.org/W2020386917', 'https://openalex.org/W2038492487', 'https://openalex.org/W2042860556', 'https://openalex.org/W2056636001', 'https://openalex.org/W2066459185', 'https://openalex.org/W2067098824', 'https://openalex.org/W2074693857', 'https://openalex.org/W2076007362', 'https://openalex.org/W2084874367', 'https://openalex.org/W2097360283', 'https://openalex.org/W2100556411', 'https://openalex.org/W2101594602', 'https://openalex.org/W2102241087', 'https://openalex.org/W2105235982', 'https://openalex.org/W2106398669', 'https://openalex.org/W2107838694', 'https://openalex.org/W2108687351', 'https://openalex.org/W2109907994', 'https://openalex.org/W2113328646', 'https://openalex.org/W2122622982', 'https://openalex.org/W2122825543', 'https://openalex.org/W2126976013', 'https://openalex.org/W2130410032', 'https://openalex.org/W2135046866', 'https://openalex.org/W2138019504', 'https://openalex.org/W2140514146', 'https://openalex.org/W2146482778', 'https://openalex.org/W2152227081', 'https://openalex.org/W2158217645', 'https://openalex.org/W2160450758', 'https://openalex.org/W2164301055', 'https://openalex.org/W2167732364', 'https://openalex.org/W2217809488', 'https://openalex.org/W2249513973', 'https://openalex.org/W2338175496', 'https://openalex.org/W2798766386', 'https://openalex.org/W2950743836', 'https://openalex.org/W2952402222', 'https://openalex.org/W2963498015', 'https://openalex.org/W3012264151', 'https://openalex.org/W3098460240', 'https://openalex.org/W3098745759', 'https://openalex.org/W3099503819', 'https://openalex.org/W3104100520', 'https://openalex.org/W3105543546', 'https://openalex.org/W3106348863', 'https://openalex.org/W3121871966', 'https://openalex.org/W3141595720', 'https://openalex.org/W3151826485', 'https://openalex.org/W33214042', 'https://openalex.org/W4244633107', 'https://openalex.org/W4255600897', 'https://openalex.org/W4285719527'], 'related_works': ['https://openalex.org/W4385489628', 'https://openalex.org/W4319831228', 'https://openalex.org/W4298306122', 'https://openalex.org/W4297153560', 'https://openalex.org/W2964186284', 'https://openalex.org/W2905950575', 'https://openalex.org/W2804400349', 'https://openalex.org/W2735159666', 'https://openalex.org/W2073750241', 'https://openalex.org/W1863473538'], 'abstract_inverted_index': {'We': [0, 27], 'study': [1], 'the': [2, 22, 42, 48, 53, 58, 90, 136, 148], 'problem': [3], 'of': [4, 33, 35, 64, 112, 158], 'estimating': [5], 'high-dimensional': [6], 'regression': [7, 101], 'models': [8], 'regularized': [9], 'by': [10], 'a': [11, 78, 86, 109, 119, 130], 'structured': [12, 99, 113], 'sparsity-inducing': [13, 114], 'penalty': [14], 'that': [15], 'encodes': [16], 'prior': [17], 'structural': [18], 'information': [19], 'on': [20, 163], 'either': [21], 'input': [23], 'or': [24], 'output': [25], 'variables.': [26], 'consider': [28], 'two': [29], 'widely': [30, 150], 'adopted': [31], 'types': [32, 63], 'penalties': [34], 'this': [36, 82], 'kind': [37], 'as': [38], 'motivating': [39], 'examples:': [40], '(1)': [41], 'general': [43, 87], 'overlapping-group-lasso': [44], 'penalty,': [45, 55], 'generalized': [46, 56], 'from': [47, 57], 'group-lasso': [49], 'penalty;': [50], 'and': [51, 70, 142, 156, 167], '(2)': [52], 'graph-guided-fused-lasso': [54], 'fused-lasso': [59], 'penalty.': [60], 'For': [61], 'both': [62, 164], 'penalties,': [65], 'due': [66], 'to': [67], 'their': [68], 'nonseparability': [69], 'nonsmoothness,': [71], 'developing': [72], 'an': [73, 123], 'efficient': [74], 'optimization': [75, 88], 'method': [76, 160], 'remains': [77], 'challenging': [79], 'problem.': [80], 'In': [81], 'paper': [83], 'we': [84], 'propose': [85], 'approach,': [89], 'smoothing': [91, 120], 'proximal': [92, 125], 'gradient': [93, 126], '(SPG)': [94], 'method,': [95], 'which': [96], 'can': [97], 'solve': [98], 'sparse': [100], 'problems': [102], 'with': [103, 122], 'any': [104], 'smooth': [105], 'convex': [106], 'loss': [107], 'under': [108], 'wide': [110], 'spectrum': [111], 'penalties.': [115], 'Our': [116], 'approach': [117], 'combines': [118], 'technique': [121], 'effective': [124], 'method.': [127], 'It': [128], 'achieves': [129], 'convergence': [131], 'rate': [132], 'significantly': [133], 'faster': [134], 'than': [135, 147], 'standard': [137], 'first-order': [138], 'methods,': [139, 141], 'subgradient': [140], 'is': [143], 'much': [144], 'more': [145], 'scalable': [146], 'most': [149], 'used': [151], 'interior-point': [152], 'methods.': [153], 'The': [154], 'efficiency': [155], 'scalability': [157], 'our': [159], 'are': [161], 'demonstrated': [162], 'simulation': [165], 'experiments': [166], 'real': [168], 'genetic': [169], 'data': [170], 'sets.': [171]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W1989060270', 'counts_by_year': [{'year': 2024, 'cited_by_count': 2}, {'year': 2023, 'cited_by_count': 2}, {'year': 2022, 'cited_by_count': 2}, {'year': 2021, 'cited_by_count': 13}, {'year': 2020, 'cited_by_count': 6}, {'year': 2019, 'cited_by_count': 16}, {'year': 2018, 'cited_by_count': 17}, {'year': 2017, 'cited_by_count': 26}, {'year': 2016, 'cited_by_count': 24}, {'year': 2015, 'cited_by_count': 17}, {'year': 2014, 'cited_by_count': 18}, {'year': 2013, 'cited_by_count': 18}, {'year': 2012, 'cited_by_count': 4}], 'updated_date': '2024-12-17T13:05:05.106487', 'created_date': '2016-06-24'}