Title: ABSTRACT AND CLASSICAL HODGE–DE RHAM THEORY
Abstract:In previous work, with Bartholdi and Schick [1], the authors developed a Hodge–de Rham theory for compact metric spaces, which defined a cohomology of the space at a scale α. Here, in the case of Riem...In previous work, with Bartholdi and Schick [1], the authors developed a Hodge–de Rham theory for compact metric spaces, which defined a cohomology of the space at a scale α. Here, in the case of Riemannian manifolds at a small scale, we construct explicit chain maps between the de Rham complex of differential forms and the L 2 complex at scale α, which induce isomorphisms on cohomology. We also give estimates that show that on smooth functions, the Laplacian of [1], when appropriately scaled, is a good approximation of the classical Laplacian.Read More
Publication Year: 2012
Publication Date: 2012-01-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 10
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot